
ELEX 2117 : Digital Techniques 2
2022 Winter Term

Timers and Clock Dividers

Ɪntroduction

Timers use counters to create delays. Clock dividers1
use counters to generate periodic outputs.
In this lab you will use a clock divider to generate

an audible tone by switching the voltage applied to a
speaker. The frequency of the tone and the duration
of the tone will be determined by timers.
You will use the 50MHz clock on the CPLD board.

The period of this clock is 1/50×106 = 20 ns.

Components

You will need:

• your CPLD board, Byte Blaster JTAG interface
and mini-USB power connector,

• the matrix keypad

• the speaker from your ELEX 2117 parts kit

• two cables with alligator clips on both ends from
your ELEX 1117 parts kit2

Requirements

Customize your design using the last three digits of
your BCIT ID: 𝑛1, 𝑛2, and 𝑛3. For example, if your
BCIT ID is A00123456 then 𝑛1 = 4, 𝑛2 = 5 and 𝑛3 =
6.
Pushing the keypad key

�� ��𝑛1 should result in a tone
at a frequency of 𝑓 = 500 + 100 × 𝑛2 Hz that lasts for
0.5 × 𝑛3 seconds.
For the ID given above, pressing

�� ��4 should gener-
ate a 500 + 100 × 5 = 1000 Hz tone for 0.5 × 6 = 3
seconds.
The tone should last for the required duration re-

gardless of how long the key is pressed. The tone
should be a square wave. The speaker output should
be set low when no tone is being generated.

1Also called frequency dividers.
2You can put alligator clips over the banana plugs.

Hints

To detect the keypress, wait for the key to be released
thenwait for it to be pressed. When the key is pressed,
set a counter to 𝑁 − 1 where 𝑁 is the tone duration
divided by the clock period. Decrement this counter
at the clock frequency. When it reaches 0 turn off the
tone:

 N clock periods
= 0.5×n3 seconds

key

speaker

A second counter counts down from 𝑀 − 1 to 0
where 𝑀 is half of the tone period (𝑇/2) divided by
the clock period. When this counter reaches zero the
output is toggled (inverted) and the counter is reset
to𝑀 − 1. This creates a square wave:

T = 1/f

T/2 M clock cycles

speaker output

clock

The sample solution uses a state machine to detect
key presses and control two timers. The state ma-
chine’s state transition diagram is:

keylo keyhi spkrlo spkrhi

k !k c1 && !c2

!c1

!c1

c1 && !c2

where k is the input from the appropriate col input
and is low (0) when the key is pressed; c1 is the value
of the first counter and c2 is the value of the second
counter. The speaker output is set high (1) in state
spkrhi and low (0) in others.

lab4.tex 1 2022-02-06 12:37

https://en.wikipedia.org/wiki/Frequency_divider

Using the convention that the first matching tran-
sition condition is followed and that the state does not
change if no condition matches, the state transition
table could be written as:

state k c1 c2 next
state

keylo 1 x x keyhi
keyhi 0 x x spkrlo
spkrlo x 0 x keylo
spkrhi x 0 x keylo
spkrlo x x 0 spkrhi
spkrhi x x 0 spkrlo

The state durations are determined by 𝑀 and 𝑁.
c1 is set to𝑁−1when the state changes from keyhi
to spkrlo. c2 is set to𝑀 − 1 when the state changes
from keyhi to spkrlo or when it changes between
states sprklow and spkrhi. c1 and c2 decrement
when the next state is sprklow or spkrhi.
The state transition tables for the counters can be

most easily written using the current state and next
state as the inputs:

c1 state next
state

next
c1

x keyhi spkrlo 𝑁 − 1
𝑛 x spkrlo 𝑛 − 1
𝑛 x spkrhi 𝑛 − 1

c2 state next
state

next
c2

x keyhi spkrlo 𝑀 − 1
x spkrhi spkrlo 𝑀 − 1
x spkrlo spkrhi 𝑀 − 1
𝑛 x spkrhi 𝑛 − 1
𝑛 x spkrlo 𝑛 − 1

You can declare enumerated state variables and
timer values as follows3:
enum int unsigned { keylo, keyhi, spkrlo, spkrhi }

state, state_next ;

localparam N=150000000 ; // 3s/20ns: 28 bits
localparam M=25000 ; // 1/1000/2/20ns: 15 bits

You can implement the state machine by assigning
to the state_next variable and then creating a
state register as follows:

3The values are for the example ID.

// state machine
assign state_next

= state == keylo && k ? keyhi :
state == keyhi && !k ? spkrlo :

...

always_ff @(posedge clk50) state
<= state_next ;

You can then use both state and state_next to set
the value of the counters:
always_ff @(posedge clk50) c1

<= state == keyhi && state_next == spkrlo ? N-1 :
state_next == spkrlo ? c1-1 :

...

CPLD Ɪ/O

The following diagram shows the connections to the
CPLD:

lab4

4

4
row[3:0]

col[3:0]

keypad spkr

Connect the matrix keypad to the CPLD as in pre-
vious labs. Connect a CPLD I/O pin to the speaker
pin and a ground pin with alligator clip cables (pin 26
was used as the spkr pin here, a ground pin is next
to it):

2

clk50

col[3..0]
state_next~0

+

Add1CIN1'h0

A[15..0]

B[15..0]16'hfffd

OUT[15..0]

state_next.spkrlo
0

11'h0

c2~[17..3]
0

1

c2~[32..18]
0

1

c2~2

c2~[47..33]
0

115'h72c3

c2~1

c2~[62..48]
0

115'h72c3

c2~0

c2~[77..63]
0

115'h72c3

c2[14..0]

D

CLK

SCLR
15'h0

Q

WideNor1

state_next~5

WideNor0

state_next~4

state_next~[9..8]
0

12'h1

state_next~[13..12]
0

12'h2

state_next~3

state_next~[17..16]
0

12'h0

state_next~2

state_next~[21..20]
0

12'h0

state_next~1

state_next~[25..24]
0

12'h1

+

Add0CIN1'h0

A[28..0]

B[28..0]29'h1ffffffd

OUT[28..0]

state_next.spkrhi
0

11'h0

c1~[27..0]
0

1

c1~[55..28]
0

1

c1~[83..56]
0

128'hfe8b0f1

c1[27..0]

D

CLK

SCLR
28'h0

Q

state

clk

col[3]

c1[27..0]

c2[14..0]

keyhi

keylo

spkrhi

spkrlo

spkr

led

row[3..0]
4'hb

14
:0

14
13
12
0
1
2
3
4
5
6
7
8
9
10
11

27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

27
:0

24

25

Figure 1: Example RTL Schematic for Lab 4.

Procedure

Create a project, compile it, and configure the CPLD.
If you use the same keypad pins as in the previous

lab and Pin 26 for the speaker output, you should end
up with the following pin assignments:

You can import these pin assignments above from
the lab4.qsf file on the course website.
For troubleshooting you can assign internal signals

to the led output on pin 77 . A high level turns on the
on-board LED. You can also view this signal with an
oscilloscope.
Test your design.

Troubleshooting

Troubleshoot any electronic device in the following
order:

• check power and ground voltages (here: check
the power switch and LED)

• check for a clock (here: assume OK)
• check the inputs (here: assign to on-board LED)
• check the outputs (here: assign to pin 77 and use
a ’scope)

If you use the same pins as above you can program
the .pof file from the course website to check your
hardware.

Submission

To get credit for completing this lab, submit the fol-
lowing to the appropriate Assignment folder on the
course website:

1. A PDF document containing:

(a) A listing of your Verilog code.
(b) A screen capture of your compilation re-

port (Window > Compilation Report) similar
to this:

(c) The schematic created by Tools > Netlist
Viewers > RTL Viewer and then File > Ex-
port.... The schematic might look like Fig-
ure 1.

2. If you do not demonstrate your completed lab
in person, submit a short video, including au-
dio, showing: (1) the tone generated by a button
press shorter than the tone duration, (2) a but-
ton press longer than the tone duration, and (3)
that no tone is generated when pressing a but-
ton on a different row and a different column.
The audio should be audible. An example video
is available on the course website.

3

	Introduction
	Components
	Requirements
	Hints
	CPLD I/O
	Procedure
	Troubleshooting
	Submission

