Timing Analysis

Exercise 1: Which of the specifications in the formula above decrease the available setup time as they increase? Which increase it?

$$t_{SU} = T_{clock} - t_{co} - t_{PD}$$

in creases de creases
 \pm_{SU} . \pm_{SU} (available)

Exercise 2: For a particular circuit $f_{\rm clock}$ is 50 MHz, $t_{\rm CO}$ is 2 ns (maximum), the worst-case (maximum) $t_{\rm PD}$ in a circuit is 15 ns and the minimum setup time requirement is 5 ns. What is the setup time

Exercise 3: What is the maximum clock frequency for a counter

using flip-flops with 200 ps setup times, 50 ps hold times and adder logic that has a 250 ps propagation delay? logic that has a 250 ps propagation delay? Tsu = 20073 200 tco = 50 75 tpD = 250ps minimum clock genied = 50+250+200 = 500 PS.

max clock freq. = ____ = ZGHz.

would increase the unit costs? Which would lower quality · Change the design to speed up critical timing paths. This might mean having more logic in parallel or "pipelining" - dividing up the computation across multiple clock cycles.

• Use a faster device – one with lower t_{PD} and/or $t_{\rm SU}$.

· Relax the design constraints by reducing the clock rate.

 Reduce the interconnect delays by asking the EDA software to spend more time (effort) in the place-and-route (PAR) process and/or using a larger PLD. · speed = ynifi

Exercise 4 : Which of the above would increase design tin would increase the unit costs? Which would lower quality	ne? Which in our ser	unit Cost	que lity
ths. This might mean having more logic in rallel or "pipelining" – dividing up the com-	7	7	7
tation across multiple clock cycles. e a faster device – one with lower t_{PD} and/or	\sim	À	\ N
lax the design constraints by reducing the ock rate.	2	2	7
duce the interconnect delays by asking the DA software to spend more time (effort) in the ace-and-route (PAR) process and/or using a	7	7	N
ger PLD.	जंभे .	•	