
ELEX 2117 : Digital Techniques 2
2021 Winter Term

State Machines

This lecture describes how to design and document state machines and how to implement them using Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, write a synthesizable Verilog description of it and convert between these three
descriptions.

Introduction

Some sequential logic circuits are most clearly de-
scribed as “state machines”1.
Although all sequential logic circuits are state ma-

chines, a state machine description is typically re-
served for controllers with a small number of states.
For example, although a counter is a state machine,
it’s typically not described as such. Examples of ap-
plications for state machines include controlling a
traffic light and sequencing the calculations to com-
pute a square root.
We will learn to describe state machines using ta-

bles, state transition diagrams and Verilog.

Mealy vs Moore State Machines

There are two types of state machines. The outputs
of a Moore state machine are a function only of the
value of a state register (called the “state”) while the
outputs of a Mealy state machine are also a function
of the current inputs:

inputs

D Q outputs

clock

Mealy only

combinational logic

registered outputs

Moore state machines are simpler but changes to
their outputs are delayed until the clock edge follow-
ing a change in the input.
Exercise 1: Which signal in the above diagram represents the current

state?

1An implementable state machine has a finite amount of
memory and is sometimes referred to as a “finite state machine”
(FSM). A state machine that implements a computational algo-
rithm is sometimes called an Algorithmic State Machine (ASM).

Exercise 2: Which outputs change on the rising clock edge? Which

change when the input changes?

Design of State Machines

The following steps can be used to design a Moore
state machine. This initial design may need to be re-
fined by adding or removing states or changing the
transitions conditions until the solutionmeets the re-
quirements.

Step 1 - Inputs and Outputs

The first step is to accurately identify the inputs and
outputs. This is important because the rest of the de-
sign effort could be wasted if necessary inputs or out-
puts are not included in the design.
The outputs will typically be specified by the re-

quirements. You should ensure the selected inputs
are sufficient to provide the desired behaviour.

Step 2 - States

The second step is to identify a sufficient number of
states.
One approach is to begin by listing all the required

combinations of the outputs. For a Moore state ma-
chine that has only registered outputs each of these
will correspond to a state.
Exercise 3: Why?

However, the outputs of the state machine are of-
ten insufficient to define its operation. In this case
we need to add “hidden” state variables which store
some sort of summary of the past input values.
For example if we are interested in detecting a par-

ticular sequence of input values the state variable
may be the number of items in the sequence (e.g. a
password) that have matched thus far. Or if we are
interested in counting the number of times an input

lec6.tex 1 2021-02-19 10:15

Ed

Ed

value has appeared then the state variable may be a
counter.
Since the output of a statemachine depends on the

previous inputs we could – in theory – use a shift reg-
ister to store previous inputs and use combinational
logic to compute the current output from the contents
of the shift register and the input. However, in most
cases it’s possible to obtain a much more concise de-
scription. It’s often useful to start by listing the short-
est sequences of inputs that result in each possible
output.

Step 3 - State Transitions

The final step is to convert the informal description
or specification of the state machine’s behaviour into
a formal description that defines:

(i) all possible state transitions, and

(ii) the input condition(s) required for each of these
transitions.

In the process of defining the transition conditions
you may find that it’s not possible to unambiguously
determine the next output based solely on the current
output and the input. This implies that there are state
variables that are do not appear in the output.
This indicates the need for “hidden” states (two or

more states with the same output) that allow the re-
quired state transitions to be made unambiguously.
The choice of these state variables is described above.

State Machine Descriptions

State machine are typically documented as a state-
transition table or a state-transition diagram.
A state transition table is a truth table with

columns for the initial state, the inputs, and the cor-
responding next state.
The output corresponding to each different state

(and inputs for Mealy state machine) can be given in
the same table or a different table.
The example below is for a motor controller with

two pushbutton inputs: one to start the motor and
one to stop it. A tabular description might look as
follows:

current
state

start stop
next
state

0 0 0 0
1 0 0 1
X 1 0 1
X X 1 0

A state machine with a small number of states can
be described using a state transition (or “bubble”) di-
agram. Each state is represented by a circle and ar-
rows represent the state transitions. Each state is la-
belled with a state name and, for a Moore state ma-
chine, the output for that state. The transitions are
labelled with the input conditions required for that
transition. For the state transition table above the
state transition diagram would be:

0 1

start == 1 && stop == 0

stop == 1

Changes of state are zero-duration events that cor-
respond to the arrows (directed edges) on a state tran-
sition diagram. In a state transition table these events
are defined by a (current state, next state) pair which
are the outputs of a state machine’s state register be-
fore and after the event.
State transition diagrams often omit input condi-

tions that don’t result in a change of state (e.g. from
0 to 0 or 1 to 1 above).

Implementation

State Encodings

In many cases, such as the example above, the state
variables are the outputs. This has the advantage that
no additional flip-flops are necessary to obtain regis-
tered outputs.
𝑘 flip-flops can be used to represent an arbitrary 2𝑘

states. For example, 3 flip-flops could encode up to 8
states.
FPGAor CPLDdesigns often use “one-hot” encod-

ings where one flip-flop is used for each state and
only one flip-flop at a time may set to 1. This en-
coding requires more flip-flops but can simplify the
combinational logic.

2

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Exercise 4: If we used 8-bits of state information, how many states

could be represented? What if we used 8 bits of state but used a

“one-hot” encoding?

State Transition and Output Logic

The state transitions are implemented as combina-
tional logic that computes the value of the next state
based on the current state and the input. In Ver-
ilog this can be done using assign (or always_comb)
statements.
Outputs that are not represented by state variables

must be computed by combinational logic from the
state and, in the case of a Mealy state machine, the
inputs.
A practical circuit also needs a clock signal and a

reset input. TheFSMwill change state on every rising
edge of the clock and revert to a starting state when
the reset input is asserted. Often the reset is syn-
chronous – it is an input and the circuit transitions
unconditionally to the required state on the next ris-
ing edge of the clock.

Multiple State Machines

Most systems contain multiple state machines inter-
acting with each other. Each one may have differ-
ent state transition rules and their state transition di-
agrams can be drawn separately.
For example, a multi-digit counter may be de-

signed as a combination of individual single-digit
counters each designed as a state machine with a
terminal-count output and a count-enable input. A
one-digit BCD counter might respond to the transi-
tion from 9 to 0 of the next-lower-order digit.
Another example would be traffic light. The tran-

sitions between light states would be controlled by a
timer which is a state machine. The timer might be
reset on a transition between traffic light states.

Examples

Resetable Counter

The state transition table, the System Verilog model
and simulationwaveforms for a 2-bit counter with re-
set and enable inputs are shown below. In this exam-
ple the state value is the counter value.

count input next count
[1] [0] reset enable [1] [0]
X X 1 X 0 0
a b 0 0 a b
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 0 1 0 0

// 2−bit counter with enable and synchronous reset

module ex22 (output logic [1:0] count,
input logic enable, reset, clk) ;

logic [1:0] count_next ;

// next−state logic
assign count_next
= reset ? 2'b00 :
!enable ? count :
count == 2'b00 ? 2'b01 :
count == 2'b01 ? 2'b10 :
count == 2'b10 ? 2'b11 : 2'b00 ;

// register
always_ff@(posedge clk) count = count_next ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us

xx 00 01 10 11

clk

count[1:0]

enable

reset

Exercise 5: What happens if both reset and enable are asserted?

Exercise 6: Draw the state transition diagram.

Sequence Detector

This type of state machine detects a sequence of val-
ues such as the correct sequence of numbers for a dig-
ital lock or the sequence of sensor inputs indicating
the direction in which a shaft is turning.
In the combination lock example below the single-

bit “unlocked” output was insufficient to determine
that the correct sequence had been input. This im-
plementation uses a shift register to store the most
recent four inputs and combinational logic to detect
the required pattern (1,2,3,4 in this example) in the
input sequence.
The unlock output is registered and will be high

for one clock periodwhen the correct sequence is rec-
ognized.

3

Ed

Ed

Ed

0 10 us 20 us 30 us 40 us 50 us 60 us 70 us 80 us

0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 +
+ 100010 001100 010100 100001 100010 001100

clk
count[4:0]
lights[5:0]

Figure 1: Simulation of traffic light controller.

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us

1234

XXX 128 0 64 32 48 40 36 34 35
XXX 128 64 32 16 8 4 2 1 0

n[15:0]
reset
clk
sqrt[7:0]
delta[7:0]
done

Figure 2: Simulation of the calculation of square root of 1234.

// digit−sequence detector

typedef enum logic { locked, unlocked } lockstate ;

module ex24 (output lockstate unlock,
input logic [3:0] digit,
input logic clk) ;

logic [3:0][3:0] digits, digits_next ;
lockstate unlock_next ;

// next−state logic
assign digits_next = digits << 4 | digit ;

assign unlock_next
= digits_next == { 4'd1, 4'd2, 4'd3, 4'd4 } ?
unlocked : locked ;

// registers
always_ff@(posedge clk) digits = digits_next ;
always_ff@(posedge clk) unlock = unlock_next ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

x 5 1 2 3 4 2
xxxx xxx5 xx51 x512 5123 1234 2342

clk
digit[3:0]
digits[15:0]
unlock

Traffic Lights

This is a controller for a traffic light at an intersection:

R

Y

G

R

Y GR

The controller combines two state machines: one
to sequence the traffic lights and one for timing. The

states are encoded as 6-bit values with the on/off val-
ues of the (Red, Green, Yellow) lights in each direc-
tion:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

6’b100_001 6’b100_010 6’b001_100 6’b100_001

A package is used to define an enumerated type to
label the four states (rg, ry, gr, and gy) according to
the signal colors in the two directions:
package ex28pkg ;

typedef enum logic [5:0]
// RYG RYG

{ rg=6'b100_001, ry=6'b100_010,
gr=6'b001_100, yr=6'b010_100 }

lightstate ;

endpackage

Delays are implemented by decrementing a counter
on each clock edge. When the counter reaches zero
the state changes and the counter is loaded with the
duration of the next state.
The state transition diagram showing the duration of
each state is:

4

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

Ed

rg

gr

ryyr

30s

30s 5s

5s

The simulation outputs are shown in Figure 1.
The module definition is given below. The state

and counter values are given initial values. On some
technologies, these are the values when a device is
powered up.
// traffic light controller

import ex28pkg::* ;

module ex26 (output lightstate lights,
input logic clk) ;

lightstate state=rg, state_next ;
logic [4:0] count=0, count_next ;

// next traffic light state
assign state_next
= count ? state :
state == rg ? ry :
state == ry ? gr :
state == gr ? yr : rg ;

// state durations
assign count_next
= count ? count-1 :
state == rg || state == gr ? 4 : 29 ;

// registers
always_ff@(posedge clk) count = count_next ;
always_ff@(posedge clk) state = state_next ;

// output
assign lights = state ;

endmodule

Exercise 7: Write the state transition table for each state machine.

Square Root

This example computes the square root of an input
number by bisection. The search interval (named
delta below) could be considered to be the state vari-
able. On reset this interval is set to half of the maxi-
mum possible value and it is divided by 2 at each it-
eration. The algorithm terminates when this interval
is reduced to zero
module ex41
(
input logic [15:0] n,
input logic reset, clk,
output logic [7:0] sqrt,
output logic done
) ;

logic [7:0] sqrt_next, delta, delta_next ;

assign sqrt_next
= reset ? 8'd128 :
{8'b0,sqrt} * sqrt < n ?
sqrt + delta : sqrt - delta ;

assign delta_next
= reset ? 8'd128 : delta/2 ;

assign done = !delta ;

always @(posedge clk) sqrt = sqrt_next ;
always @(posedge clk) delta = delta_next ;

endmodule

Figure 2 shows the calculation of the square root
of 1234.
Exercise 8: What is the size of the expression sqrt*sqrt? Of

{8'b0,sqrt}*sqrt?

Exercise 9: Draw the state transition diagram (use∆ = 0 and∆ ≠ 0
as the states).

5

Ed

Ed

Ed

Ed

Ed

Ed

Ed

	Introduction
	Mealy vs Moore State Machines
	Design of State Machines
	Step 1 - Inputs and Outputs
	Step 2 - States
	Step 3 - State Transitions

	State Machine Descriptions
	Implementation
	State Encodings
	State Transition and Output Logic

	Multiple State Machines
	Square Root

