
ELEX 2117 : Digital Techniques 2
2021 Winter Term

Asynchronous Serial Interface

Introduction

An Asynchronous Serial Interface is a simple low-
speed serial communication interface. It is often used
for diagnostic, programming and console interfaces
on embedded devices. The simplest version uses a
single data line in each direction (Transmit Data and
ReceiveData) and a groundpin. TheRS-232 standard
specifies levels of at least ±5 volts but embedded sys-
tems often use logic-level signals.
In this lab you will design and implement the

transmitter of a UART (Universal Asynchronous
Transmitter-Receiver) that transmits an 8-bit binary
value serially.
A supplied control module will test your UART

module by transmitting a nine-character text string
that is a printable version of your BCIT ID encoded
using the ASCII (or Unicode) encodings1.
You will use the Analog Discovery 2 (AD2) oscillo-

scope, logic analyzer and “UART” protocol analyzer
functions to display the waveforms and data.
Youmust implement the transmitter as a state ma-

chine. Quartus will generate a state transition dia-
gram and a state transition table from your HDL de-
scription.
The supplied lab7.qar Quartus project archive

contains the required code except for the uartmod-
ule, which you must write.

Specifications

The supplied lab7 module has a 50 MHz clk clock
input, an active-low reset_n_in input and one-bit
txd transmit data output .
Your uart module will have a 50 MHz clk input,

a debounced reset signal named reset_n, a nextchr
signal that is asserted when the UART should start
sending the 8-bit character chr and a nextbit signal
to indicate when the next bit of the character should
start.

1An encoding is a mapping of characters (“glyphs”) to num-
bers. ASCII a subset of Unicode that includes all English-
language characters and numbers.

clk

reset_n_in

clk

reset_n

nextbit
nextchr
chr[7:0]

txd

uart

txd

lab7

debounce

The following diagram shows the timing relation-
ship of the signals at the input to the uartmodule:

nextbit

nextchr

12 bit periods

reset_n

clk

chr

Your uart module must implement a state ma-
chine that operates as follows:

• If reset_n is asserted the uart is reset; any
transmission in progress is halted.

• If nextchr is asserted, transmission of a new
character is started; chr contains the value of
this character. You do not need to store it; the
value will remain valid until the next character.

• If nextbit is asserted, the next bit of the char-
acter should be output.

State changes must only take place on the rising
edge of clk.
Eight bits per character must be transmitted in or-

der from least-significant bit to most-significant bit.
A “1” bit should be transmitted as a high logic level
and a “0” bit as a low logic level. An extra “0” (“start
bit”) must be transmitted before the data bits and an
extra “1” (“stop bit”) must be transmitted after the
data bits. txd should be highwhen the statemachine
is in the idle state and no data is being transmitted.
The following logic analyzer screen capture shows

the txdwaveform when the character “A” (8'h41) is
transmitted:

lab7.tex 1 2021-03-08 00:29

https://en.wikipedia.org/wiki/Asynchronous_serial_communication


0 1 ms 2 ms

41 30

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3

char[7:0]

clk

nextbit

nextchr

reset_n

state

state_next

txd

Figure 1: UART Simulation Waveforms.
uart:u0

clk

nextbit

nextchr

reset_n

char[7..0] txd

state

clk

nextbit

nextchr

reset_n

b0

b1

b2

b3

b4

b5

b6

idle

startbit

stopbit

txd~0

txd~1
0

1

txd~2
0

1

txd~3
0

1

txd~4
0

1

txd~5
0

1

txd~6
0

1

txd~7
0

1

txd~8
0

11'h0

txd~9
0

11'h1
6

7 5

4

3

2

1
0

Figure 2: RTL Schematic of UART Module.

Figure 3: Sample State Transition Diagram.

Figure 1 shows the simulationwaveforms at the in-
put and output of theUARTmodule. The clockwave-
form is not visible since it is so much faster than the
data. The nextchr and nextbit signals have a du-
ration of one clk period and are aligned.
Quartus must recognize your design as a state ma-

chine. This requires that you follow specific require-
ments listed in the Quartus Recommended HDL
Coding Styles. In particular:

• use an enumerated type of unsigned integer type
to define the states (example below),

• do not use the state variable as an output

• keep other operations in the module (e.g. com-
putations) separate from the statemachine logic

• include a synchronous reset

Youmust also follow the course coding guidelines.
Note that you can meet the above guidelines using
only assign and always_ff concurrent statements.
An example of a declaration of a suitable enumer-

ated type would be:

typedef enum int unsigned
{ idle, startbit, b0, b1, ..., stopbit } state_t ;

state_t state, state_next ;

2

https://www.intel.com/content/www/us/en/programmable/documentation/ntt1529445293791.html#mwh1409959613013
https://www.intel.com/content/www/us/en/programmable/documentation/ntt1529445293791.html#mwh1409959613013


If you have followed the state machine coding
guidelines theQuartusRTLnetlist viewerwill display
the state machine as a separate yellow logic block as
shown in Figure 2.
Double-clicking the state machine block will dis-

play a state transition diagram similar to that in Fig-
ure 3 along with tables showing the state transition
conditions and state encodings2:

You must modify the lab7.sv file to substitute
your BCIT ID for the A00123456 value.
The lab7.sv file contains a testbench named

lab7_tb.sv that you can use to simulate your de-
sign.

CPLD I/O

The following photos shows the ground (black and
orange/white), ’scope channel 1 (orange) and digital
input (pink, pin DIO0) connections to the AD2 and
the ground (white, GND pin), reset_n_in (blue, pin
99) and txd (violet, pin 97) connections to the CPLD
board:

2Note that Quartus has chosen a one-hot encoding in which
the idle (reset) state is active-low.

Connect the reset_n_in input to a normally-
open pushbutton so that pushing the button asserts
the reset signal.

Use of AD2

Use the AD2 scope, logic analyzer and protocol win-
dows for troubleshooting and to verify the operation
of your design.
A scope channel can be connected to the pushbut-

ton input or the txd output to verify the voltage lev-
els and check for signal integrity issues such as noise,
glitches or ringing. You can trigger on the falling edge
of txd to capture the start of the transmitted wave-
form.
The logic analyzer can be used to display digital

signals. It can display bus values (not used here) and
multi-bit serial signals. Figure 4 shows the transmit-
ted serial data using a configuration called “UART.”
The trigger (T column) has been set to the falling

edge of the Data signal and the Protocol options have
been set for 9600 bits per second, 8 bits per character
and normal polarity (low for a “1” bit):

The protocol analyzer can be used to decode more
complex protocols such as those including device ad-
dresses and variable-length fields (neither used here).
The following screen captures show the “UART” de-
coding. Figure 5 shows an example of the protocol
analyzer display showing the received characters (the
reset button was pressed twice).

3



Figure 4: Logic Analyzer Display.

Figure 5: Protocol Analyzer Display.

You can troubleshoot your design by defining extra
CPLD pins as outputs and connecting these to digital
inputs of the AD2. This allows the logic analyzer to
monitor other signals in your design.

Note: There seems to be a conflict between the
AD2 and the USB-Blaster drivers. You may need
to disconnect the AD2 each time you program
the CPLD.

Submission

To get credit for completing this lab, submit a PDF
document containing the following to the Assign-
ment folder for this lab on the course website:

1. A listing of your uart.sv System Verilog file.

2. The RTL schematic (Tools > RTL Netlist) similar
to Figure 2.

3. A screen capture of the state transition diagram
similar to Figure 3.

4. A screen capture of your compilation report sim-
ilar to:

5. Screen captures of the AD2 logic analyzer and
protocol analyzer similar to those in Figures 4
and 5 demonstrating the operation of your in-
terface. They should both show your full BCIT
ID.

4

https://forum.digilentinc.com/topic/8797-analog-discovery-2-and-altera-usb-blaster-conflict/

	Introduction
	Specifications
	CPLD I/O 
	Use of AD2
	Submission 

