
ELEX 2117 : Digital Techniques 2
2021 Winter Term

Sequential Logic Design with Verilog

Updated Jan23: description of behaviour in Submission section.

Introduction

In this lab you will implement a circuit that displays
successive digits of your BCIT ID on a four-digit 7-
segment LED display.
You will use the same components, input/output

devices and wiring as the previous lab.

Requirements

Your design should implement the following circuit.

reset_n

clock_in

digit_next digit a..g

1

2

3 733
D Q

clock50

clock
debounce

en[0]..en[3]

4

It has two pushbutton switch inputs (reset_n and
clock_in), a 50 MHz clock input (clock50), seven
active-low segment outputs, (a through g), and four
active-high digit-enables (en[3] through en[0]).
The functions of the blocks labelled with circled

numbers are:

1⃝ Is a combinational logic circuit that outputs the
next digit position based on the current digit and
the active-low reset_n input. The function is
described below. Digit values have values from 0
to 7 because BCIT ID’s have 8 digits. This signal
is thus 3 bits wide.

2⃝ Is a 3-bit register whose value is the digit position
being displayed (between 0 and 7). The regis-
ter’s clock signal is the “debounced” clock_in
input.

3⃝ Is a combinational logic circuit that outputs sig-
nals that drive the LED segments and digit en-
ables so that the correct number is displayed for
the current digit position.

Your circuit should operate as follows:

• The output should change on the rising edge of
the clock (that is, when the clock_in pushbut-
ton is released).

• If the reset_n input is asserted (low) at the
rising edge of the clock, the first digit of your
BCIT ID should be displayed on the leftmost
LED digit.

• If the reset input is not asserted at the rising edge
of the clock then the next digit of your BCIT ID
should be displayed on the next LED digit posi-
tion.
When you reach the rightmost digit position dis-
play should “wrap around” and display again on
the leftmost digit for the fifth digit of your ID.

• if your ID ends with:

– an odd number: your design should con-
tinue from the first digit (position 0) when
last digit is reached,

– an even number: your design should re-
main on the last digit (7) when last digit is
reached.

Debouncing

Most mechanical switches briefly interrupt the con-
nectionwhen they switch. This “switch bounce” pro-
duces multiple signal edges. So you’ll need to “de-
bounce” the clock_in switch input 1.
Include a module instantiation statement such as:
debounce debounce0 (clock_in, clock50, clock) ;

in your Verilog code where clock_in and clock
are the signal names for the un-debounced and de-
bounced clock signals respectively and clock50 is
the 50 MHz clock on the CPLD board connected to
CPLD pin 12.
Themodule instantiation statement above adds an

instance of the debouncemodule to your designwith
1But not reset_n since it’s level-sensitive rather than edge-

sensitive.

lab2.tex 1 2021-01-23 22:04

the name debounce0, and connects the module in-
puts and output to the specified signals.

CPLD I/O

The CPLD should be wired up to two pushbutton
switches and the four-digit seven-segment LED dis-
play as in the previous lab.

Procedure

Follow the general procedure in the Software Instal-
lation and Use document on the course web site to
create a project, compile it and configure your CPLD.
Connect the CPLD board to the switches and LED.
Test your design and fix any errors.
Note the following instructions specific to this lab.

Debouncing

Download debounce.sv from the course website to
your project folder and add it using Project > Add/Re-
move Files in Project..., select the file, Add > OK).
You can use Assignments > Import Assignments to

import your lab1.qsffile instead of doing all the pin
assignments manually. However, you’ll also need to:

• change the names x[0] to clock_in and x[1]
to reset_n,

• update the signal and entity names for the pull-
up assignments,

• assign pin 12 to the clock50 50 MHz oscillator
input.

In addition the previous inputs and outputs, your
module will also need the 50 MHz clock input.
You should end up with the following assign-

ments, possibly using different signal names:

On each release of the pushbutton (rising clock
edge) the count value should change to the next digit
of your BCIT ID. Holding the reset button and releas-
ing the block button should display the first digit of
your BCIT ID. On reaching the last digit of your ID,
the display should change (or not) as described above.

Hints

1. Verilog has an addition operator you can use to
compute the next digit position. For example,
assign digit_next = digit+1'b1;.

2. You’ll need to define an internal clock signal
that the debounced version of the clock_in in-
put.

3. Examples of the output digit sequences are
shown below for the IDs A00123456 and
A01234567. The bottom rows show the outputs
after the rising edge of the clock (“ ” represents
a rising edge of the clock):

reset_n L H H H H L H H H H H H H H H H H …
clock …

A00123456 0 0 0 1 2 0 0 1 2 3 4 5 6 6 6 6 6 …
A01234567 0 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3 …

Submission

To get credit for completing this lab, submit the fol-
lowing to the appropriate Assignment folder on the
course website:

1. A PDF document containing:

2

• A listing of your Verilog code.
• A screen capture of your compilation re-
port (Window > Compilation Report) similar
to this:

2. The PDF file containing the schematic created
by Tools > Netlist Viewers > RTL Viewer and then
File > Export... . The file might look like Figure 1
or Figure 2.

3. A video showing the pushbuttons and the LED
display as you test your design by doing the fol-
lowing:

• push & hold reset_n
• push & release clock_in once (shows 0)
• release reset_n
• push & release clock_in three times
(shows first three digits)

• push & hold reset_n
• push & release clock_in once (shows 0)
• release reset_n
• push & release clock_in eleven times
(shows all digits and either stops at the last
digit if it’s even or starts again if it’s odd)

3

en[3..0]

lut2

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

DATAIN[3..0]
4'h0

WADDR[2..0]
3'h0

RADDR[2..0]

DATAOUT[3..0]

a

b

clock50

c

debounce:debounce0

sw_in

clk sw

lut

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

DATAIN[6..0]
7'h0

WADDR[2..0]
3'h0

RADDR[2..0]

DATAOUT[6..0]

d

digit[2..0]

D

CLK

SCLR
3'h0

Q

+

Add0CIN1'h0

A[2..0]

B[2..0]3'h1

OUT[2..0]

clock_in

e

f

=

Equal0
A[31..0]

B[31..0]32'h7
OUT

g

digit_next~[2..0]
0

13'h0
digit_next[2..0]

0

13'h0

reset_n

dp
1'h1

6

5

4

3

2

1

0

2:
0

Figure 1: Example RTL Schematic for Lab 2 (look-up table implementation).

aclock50

b

debounce:debounce0

sw_in

clk sw

c
digit[2..0]

D

CLK

SCLR
3'h0

Q

d

concat~[2..1]
0

12'h2

concat~[6..3]
0

14'h6

concat~[12..7]
0

16'h18

concat~[18..13]
0

16'h10

concat~[25..19]
0

17'h79

concat~[32..26]
0

17'h40

clock_in

e

f

=

Equal1
A[2..0]

B[2..0]3'h0
OUT en~0

g

=

Equal0
A[31..0]

B[31..0]32'h7
OUT

=

Equal6
A[2..0]

B[2..0]3'h5
OUT

=

Equal4
A[2..0]

B[2..0]3'h3
OUT

digit_next~[2..0]
0

13'h0
digit_next[2..0]

0

13'h0

concat~0
0

11'h1

reset_n

+

Add0CIN1'h0

A[2..0]

B[2..0]3'h1

OUT[2..0]

=

Equal3
A[2..0]

B[2..0]3'h2
OUT

=

Equal7
A[2..0]

B[2..0]3'h6
OUT

=

Equal2
A[2..0]

B[2..0]3'h1
OUT

en~[7..5]
0

13'h0

=

Equal5
A[2..0]

B[2..0]3'h4
OUT

en~1

en[3..0]

en~3
0

11'h0

en~4
0

11'h0

en~2

dp
1'h1

2:
0

1:
2,

1

6,
6:

3

18
:1

3

26

27

28

29

30

31

32

5:
7

Figure 2: Example RTL Schematic for Lab 2 (multiplexer implementation).

4

	Introduction
	Requirements
	Debouncing
	CPLD I/O
	Procedure
	Debouncing

	Hints
	Submission

