ELEX 2117 : Digital Techniques 2
2020 Winter Term

Interfaces

Parallel Interfaces

We've seen how data can be transferred between two
flip-flops by connecting the Q output of one to the D
input of another and using a common clock:

-+D Q a D Qf

clock _l—,

If these two flip-flops are on different devices we
can use a cable to connect the D, Q and clock lines
and this allows us to transfer data between devices
(e.g. between a computer and a printer):

-=

devicel)

f--

| device2

L_~

data+D Q D Qf+ data

- F--

clock

1
"\ interface

This type interface is the simplest type of interface
between two devices. We can transfer any number
of bits on the same clock edge. For example, when
transferring data to a printer we might transfer one
byte at a time.

Serial Interfaces

We can reduce the width of the data bus between the
two devices down to 1 bit. This reduces the number
of conductors required in the interface cable.

Words of more than one bit can be transferred over
the interface sequentially (serially). The conversion
from a word whose w bits are available in parallel to
a sequence of bits can be done using a shift register
whose flip-flops can be loaded in parallel as shown
below:

[w-1..0]
parallel in

14[w-1]

load ~

clock -

lec9.tex

This circuit (called SIPO for “serial-in, parallel-
out” in the textbook) loads w bits into the flip-flops
in parallel when the load input is asserted and other-
wise shifts one bit per clock cycle to the serial out
output.

We can draw this more simply as:

w-1

w-2.0 W Qlw-1..1]
0 _wi] o ol¥ ,
: Q- 1 serial
parallel in ———— out

Toad QIo]

oa

clock

clock

Q
\\ X X serial out
OTTITTITTID

where the w-bit register is loaded from the parallel in-
put when load is asserted or from the current register
value shifted right by one bit. The least-significant bit
of the register is the serial output.

At the receiving side of the interface the serial
stream of bits needs to be converted back to a word
where all the bits are available in parallel after a com-
plete word has been shifted in. We can do this with
another shift register:

7 Qw-1..1]
w20 W-1 Wy o4 W parallel
. . [w-1] 1 out
serial in |
clock

serial i |n\ Q
XX X discarded
OTTITTITTID

in this case the serial input bits are shifted into the
w-bit shift register through the most-significant bit.
The example below shows how the value 1101 is
transferred over the interface. The columns show
the values on the load signal, the parallel input,
the transmitter register, the receiver register, and a
valid signal that indicates that the value in the re-
ceiver register is valid. The lines corresponds to reg-
ister values between rising edges of the clock. aaaais

2020-63-31 19:02

the previous value transferred over the interface and
bbbb is the next value to be transferred.

load parallel transmit receive valid
in register register
0 1101 000a aaa- 0
1 -——- 1101 aaaa 1
1 -——- 0110 1aaa 0
1 -—=- 0011 O1aa 0
0 bbbb 0001 101a 0
1 -——- bbbb 1101 1

The word to be transmitted is placed on the parallel
input and load is set low. After the next rising clock
edge this value has been loaded into the transmit reg-
ister and the first (least-significant) bit is available on
the serial output. On each subsequent rising clock
edge the bit on the serial interface is stored in the re-
ceiver register and another bit is placed on the serial
output. This continues until all the bits are loaded
into the receiver register. When the final bit is cap-
tured the valid output indicating that the register
contents are valid is asserted. This could be used to
load the word into another register.

A complete design requires some way to set the
load signal low when there is a word at the parallel
input ready to be transmitted and to generate a done
status signal when the word has been transmitted so
that another word can be sent.

A state machine is also required at the receiver to
indicate that w bits have been shifted into the receiver
register and assert the valid output.

These transmitter and receiver state machines
must be synchronized. The details will depend on the
type of serial interface and the interface to the device.
In addition, both interfaces must use the same con-
vention for the order in which the bits are sent and
must be designed to transfer the same number of bits
per word .

Example: SPI

The Serial Peripheral Interface (SPI) is a common
interface between a microcontroller (typically the
“master”) and a peripheral IC (the “slave”). Appli-
cations include LCD controllers and SD cards.

The SPI interface has separate data in and data out
lines (labelled MOSI and MISO), a clock signal and a
slave-select (SS) signal.

microcontroller peripheral

(master) (slave)
MOSI MOSI
MISO MISO
SCLK SCLK

5SSO 53
SS1
— MISO
— MOSI
— SCLK
53

The following timing diagram shows the operation
of the bus:

XX X X

s —

MOSI/MISO

The data transfer begins when the master asserts
SS. On each subsequent clock edge' one bit is trans-
ferred in each direction. Typically multiples of 8 bits
are transferred. SS is de-asserted when the transfer is
done.

Asynchronous Interfaces

We can omit the clock from the interface to reduce
the number of conductors required. This requires
that the clock signal be regenerated at the receiver so
that the bits can be sampled and shifted in at the cor-
rect time.

The receiver has an internal clock running at ap-
proximately the same frequency as the transmitter.
But it must “synchronize” its clock with the trans-
mitter clock so the clock edges are aligned. To do this
the receiver uses a clock that operates at some mul-
tiple of the transmitter’s clock and looks for changes
in the input signal in-between it’s clock edges.

Accurate synchronization thus requires periodic
changes in data signal level, even if the data is con-
stant (e.g. all zero). There are various ways of ensur-
ing this:

« sending an pair of bits of opposite level in-
between words (the “stop” and “start” bits used
in “RS-232” serial interfaces);

ISPI interfaces can be configured so that the data and SS
change on either the rising or falling edge of SCLK.

« encoding each bit as either a pair of 0-1 or 1-0
bits (“Manchester” coding);

« inserting an extra bit when long runs of the same
polarity are detected (“bit stuffing”).

Bi-Directional Interfaces

‘We can further reduce the number of conductors re-
quired by using the same ones to transmit data in
both directions. One way is by using tri-state outputs
that are alternately enabled so that only one side of
the interface is configured as an output at any time:

transmit/receive transmit/receive

Another is by using open-collector outputs so that
multiple devices can pull the buslow in a “wired-OR”
configuration:

Often, one device is a master and “polls” the slave.
After the poll the master turns off its driver and the
slave turns on its driver for the duration of the re-
sponse. However, there are also interfaces (e.g. 12C,
see below) where multiple devices can contend to be-
come the bus master using an “arbitration” protocol.

Example: USB

Universal Serial Bus (USB) is a popular peripheral in-
terface that uses an asynchronous bidirectional serial
interface. Earlier versions (“USB 2.0”) of the inter-
face required only four conductors: two for a differ-
ential?, bi-directional data signal, one for ground, and
one for power (+5 V).

2The data is encoded as the difference between the two signals
rather than their voltage relative to ground.

Other Interfaces

Addressable Interfaces

Instead of using SS lines to enable specific devices,
it’s possible to design interfaces where a device can
be enabled by sending it’s address on the data lines
before sending it data. The Inter-IC Communica-
tions (I2C) protocol is an example. This bus allows
many IC’s to be connected using only two signals:
SDA (data) and SCL (clock), both of which use open-
collector bidirectional buses.

SerDes

A serializer/de-serializer (SerDes) is the name used
for serial interfaces that operate at high (GHz) speeds.
These are typically used for high-speed peripheral in-
terfaces such as HDMI, PClIe and SATA or for fiber-
optic communication links.

Device Descriptors

In addition to being able to transfer data, modern in-
terfaces can often be polled for “descriptors” — blocks
of data that help identify and configure them. A com-
mon example is the USB interface. Each USB device
can be polled for a small amount of data that identi-
fies the device type (e.g. a keyboard), the manufac-
turer and the model.

	Parallel Interfaces
	Serial Interfaces
	Example: SPI

	Asynchronous Interfaces
	Bi-Directional Interfaces
	Example: USB

	Other Interfaces
	Addressable Interfaces
	SerDes
	Device Descriptors
	

