State Machines

(see section 7-14 in text for related

Exercise 1: Why do I need to know this?

material)

for Lab 5 & Lab Exam #1

Exercise 2: In theory, what is a SM? What isn't a SM?

-ong thing with memory is a SM (in theory) - if no mmory (tt, registers) then it's not a SM.

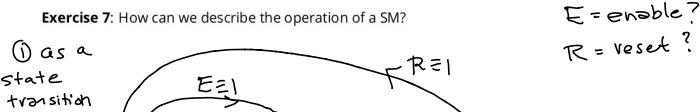
Exercise 3: How large a SM is it practical to design? (how many states)

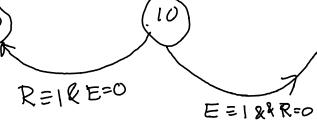
~ | page) if larger, then decompose < 20? States. } decompose to smaller SMS.

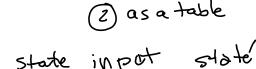
Exercise 4: What are some things we could design as SMs?

- elevator - traffic light - >larms

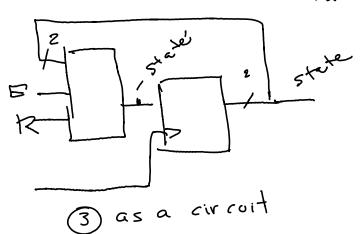
Exercise 5: What are some things we would not design as a SM? Why?


too may states too complicated. (but parts of the CPU would be)


Exercise 6: What defines the state of a SM?


di agram

the contents of registers/FFs.



11

State	MBON	57010
	も々	
00	(۲ ۲	1 0
10	0 1 0	00
1 \	X	00

Exercise 8: Can a design have multiple state machines?

yes, very common.

Exercise 9: How can one SM control another?

through their states or their state transitions (events).

Exercise 10: What are the steps in designing a SM?

Exercise 11: Show me some examples!

see lecture 6.