Solutions to Quiz 3

There were two versions of each question. The values and the answers for both versions are given below.

Question 1

A TTL logic gate has V_{OH} =2.7 (or 2.4) V and V_{IH} =2 V. A CMOS logic gate has V_{OH} =2.4 V and V_{IH} =2 V.

- (a) What is the (high-level) noise margin for a CMOS output driving a TTL input?
- (b) What is the (high-level) noise margin for a TTL output driving a CMOS input?

Answers

The high-level noise margin is $V_{OH} - V_{IH}$.

- (a) For a CMOS output and TTL input the noise margin is $2.4 2 = \boxed{0.4 \text{ V}}$.
- (b) For a TTL output and a CMOS input the noise margin is $2.7 2 = \boxed{0.7 \text{ V}}$ (or $2.4 2 = \boxed{0.4 \text{ V}}$).

Question 2

What clock rate would be required by a PWM DAC with 8 (or 6)-bit resolution and a 10 kHz pulse rate?

Answers

For a PWM DAC the clock rate is 2^n times the pulse rate where n is the number of bits of resolution. The required clock rate is thus $2^8 \times 10 \text{ kHz} = \boxed{2.56 \text{ MHz}}$ (or $2^6 \times 10 \text{ kHz} = \boxed{640 \text{ kHz}}$).

Question 3

A sine wave with an amplitude of 2 (or 3) V is sampled using a 6-bit A/D converter. What is the power of the quantization noise? Assume the resistance is $1\,\Omega$. Give your answer in Watts.

Hints: (1) The power of a sine wave of amplitude A is $A^2/2$ (for R=1 Ω). (2) The ratio of the powers S and N in dB is $10 \log(\frac{S}{N})$.

Answers

The power of the sine wave is $S = V^2/2 = 2^2/2 = 2 \text{ W}$ (or $S = V^2/2 = 3^2/2 = 4.5 \text{ W}$).

For B = 10-bit ADC the quantization SNR is 1.76 + 6B = 61.76 dB. The ratio in linear units is $S/N = 10^{61.76/10}$.

Solving for the noise power, $N \approx 2/10^{61.76/10} \approx 1.33 \times 10^{-6} \,\mathrm{W}$ (or $4.5/10^{61.76/10} \approx 3.00 \times 10^{-6} \,\mathrm{W}$).

Question 4

Which of the following changes would most reduce power consumption?

- reduce the supply voltage to ½ (or ⅓3) of the original, or
- reduce the clock rate to 1/3 (or 1/10) of the original

Justify your answer.

Answers

(1) Reducing the supply voltage to 1/2 of the original results in a power consumption of $P_2/P_1 = (V_2/V_1)^2 = (1/2/1)^2 = 1/4$ while reducing the clock rate to 1/3 of the original results in a power consumption of $P_2/P_1 = f_2/f_1 = 1/3$.

Since 1/4 is less than 1/3, reducing the supply voltage most reduces power consumption.

(2) Reducing the supply voltage to 1/3 of the original results in a power consumption of $(1/3/1)^2 = 1/9$ while reducing the clock rate to 1/10 of the original results in a power consumption of $P_2/P_1 = f_2/f_1 = 1/10$

Since 1/9 is greater than 1/10, reducing the frequency most reduces power consumption.