Timing Analysis

Exercise 1:

The diagram above shows an oscilloscope screen capture that includes one period of an *active-low* digital waveform. The scale on the horizontal axis is 20 ns per division. What are: the rise time, period, positive pulse width and duty cycle?

Exercise 2:

Label the specifications A through D as requirements or guaranteed responses. Which specifications are measured to a signal being in a high-impedance state? Which are measured from a rising edge only? From either?

Exercise 3: Is t_{PD} a requirement or a guaranteed response?

Exercise 4: Is $t_{\rm SU}$ a requirement or a guaranteed response? How about $t_{\rm H}$?

Exercise 5:

$$t_{\text{SU}}$$
 (avail) = T_{Clock} - t_{CO} (max) - t_{PD} (max)

Which of the specifications in the formula above decrease the available setup time as they increase? Which increase it?

Exercise 6: For a particular circuit f_{Clock} is 50 MHz, t_{CO} is 2 ns (maximum), the worst-case (maximum) t_{PD} in a circuit is 15 ns and the minimum setup time requirement is 5 ns. What is the setup time slack? Will this circuit operate reliably? If not, what it the maximum clock frequency at which it will?

Exercise 7: What is the maximum clock frequency for a counter using flip-flops with 200 ps setup times, 50 ps clock-to-output delays and adder logic that has a 250 ps propagation delay?