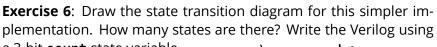
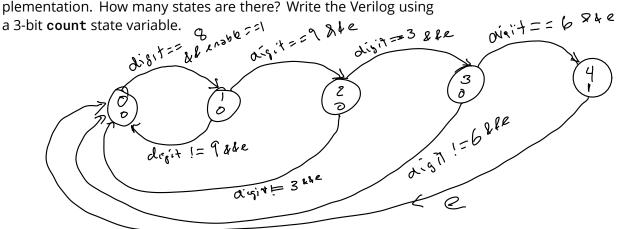

Examples of State Machines

Exercise 1: The example above is an N-bit shift register that shifts the bits right. Draw a block diagram and write the Verilog for a 6-bit shift register that shifts left.

Exercise 2:

Fill in the diagram above for a 4-bit (N=4) right-shift shift register. Assume the initial value is zero. Which bit is the oldest (first) value in the waveform? Which bit of the shift register holds the oldest value?


Exercise 3: Draw a block diagram and write the Verilog for a circuit that sets an output named **detect** high when the sequence of values 1, 1, 0, 1 has appeared on an input named **in** on successive rising edges of the clock.


in
$$E$$
 {In, $q(3:1)$ } $\frac{4}{4}$ $\frac{4}{9}$ $\frac{$

and module

Exercise 4: How could you modify the code so that **digits** is only updated when an **enable** input is asserted?

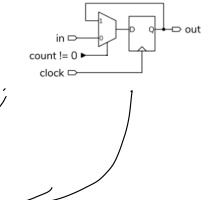
Exercise 5: How many states can this state machine have?

e: enable==1 d: digit

assum the combination is

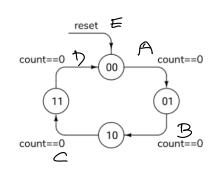
Exercise 7: For which states would a **fell** output be asserted? A rose output? Draw the schematic and write the Verilog for this state machine. Assume an input in and a 2-bit register bits that holds the two most recent input values.

fell would be a seerted in state 10.
rose would be a seerted in state 01.


Exercise 8: Can you design an edge detector that uses only one bit? Is this a Mealy or a Moore state machine?

cessing rose = 19 & in) < Meshy (output is function of input)

Exercise 9: Write always_ff statements that implement these state machines.


count	in == out	next	
	III out	count	
Х	1	N-1	
0	×	N-1	
n	0	n-1	

Exercise 10: Write the state transition table for this state machine.

State	Inputts	next State
	-	

state	reset	count==0	next State.	
X	1	X	00	F
(°, (°)	0	1	01	A
0 (0	l	10	B
O ((111	6
16		l	60	\mathcal{D}
	10			

