
ELEX 2117 : Digital Techniques 2
2024 Fall Term

State Machines

This lecture defines state machines and describes how to document them and how to implement them using Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, write a synthesizable Verilog description of it and convert between these three
descriptions.

Introduction

Registers

We can connectN flip-flops to the same clock to form
anN-bit register. The common clock loads every flip-
flop at the same time:

D Q

D Q

D Q

clock

D0

D1

DN-1

Q0

Q1

QN-1

D Q

clock

D Q
N N

The Verilog always_ff statement creates a regis-
ter.

State Machines

The state of a register is its value. A state machine is
a description of how the state changes.
A state machine is implemented as a register

whose value on the next rising edge of the clock is
computed from the current state and, optionally, in-
puts:

inputs

D Q outputs

clock

Mealy state machine only

 next−state
combinational
 logic

state

 output
combinational
 logic

The state register is loaded on each rising edge of
the clock, but if it’s loaded with its current value then
there is no change of state.
The output of a state machine is a function of its

state. In some cases the outputmay be the state itself.
The above describes a Moore state machine. A

Mealy state machine is one where the output is a
function of the current state as well as the inputs.

State Machine Descriptions

For example, consider a state machine with two bits
of state that sequences through the values 00, 01, 10,
11 and back to 00. The output should be 0 in states
00 and 01 and 1 in states 10 and 11. There is an input
named reset. The state is set to 00 if reset is 1.

Truth Tables

We can describe a state machine using truth-tables.
One table has columns for the current state, the in-
put value(s), and the corresponding next state. An-
other table has columns for the current state and the
output.
We could write the state transition table and the

output table as:

state reset next
state

00 0 01
01 0 10
10 0 11
11 0 00
00 1 00
01 1 00
10 1 00
11 1 00

state output
00 0
01 0
10 1
11 1

Exercise 1: For the state machine described above, if the current
state is 01, what will be the next state? When will the state change?
What is the output in state 00? In state 01? In state 10?

lec2.tex 1 2024-09-20 08:48

State Transition Diagrams

A state machine can also be described by a state tran-
sition diagram drawn using the following conven-
tions: (1) each state is represented by a circle labelled
with the state name or value; (2) each state shows the
output for that state (unless the state is also the out-
put value); (3) arrows show possible transitions be-
tween states; (4) transitions happenwhen the expres-
sion labelling an arrow is non-zero (true)1; (5) unla-
belled transitions happen unconditionally; (6) transi-
tions with no origin come from every state; (7) condi-
tions that don’t cause a state change are not shown2;
(8) only one transition out of a state may be true (the
expressions on the arrows leaving each state must be
mutually exclusive).
The following is a state transition diagram for the

state machine above:

r

00 01 10 11

0 0 1 1

r: reset==1

!r !r !r

!r

Exercise 2: Modify the diagram so the state machine counts to 11
and stops.
Exercise 3: Add a down input that cause the values to count down.

Simplifications

We can simplify truth tables using the following con-
ventions: (1) x can be used for “don’t care” in state
or input columns; (2) the first matching row applies;
(3) if there is no matching row there is no change of
state; (4) expressions can be used to define the next
state as a function of the current state and the input.
For example, we could rewrite the above state tran-

sition table as:

state reset next
state

xx 1 00
11 0 00
𝑛 0 𝑛 + 1

1Abbreviations for these expressions can be used to keep the
diagram tidy.

2Some authors do not allow this.

Exercise 4: What will be the next state if the state is 00 and the
reset input is 1? If the state is 00 and the reset input is 0? When
does the state change? When does reset affect the output?
States can be labelled with names instead of nu-

merical values.
Exercise5: Write the above state transitionandoutput tables using
state names A, B, C, and D.

State Machines in Verilog

A state machine can be written in Verilog using one
conditional operator for each table row (or for each
diagram arrow). The condition is expression that la-
bels the arrow in the diagram or an expression that
is true for the current state and inputs for that tran-
sition. The true value is the next state for that transi-
tion. The false value is the next conditional operator
or, if no transition matches, the current state.
A straightforward translation of the truth tables

above would be written as:
// 2-bit clock divider with reset

module ex79
(output logic [1:0] count,
output logic out,
input logic reset, clk) ;

always_ff @(posedge clk) count
<= reset && count == 2'b00 ? 2'b00 :

reset && count == 2'b01 ? 2'b00 :
reset && count == 2'b10 ? 2'b00 :
reset && count == 2'b11 ? 2'b00 :
!reset && count == 2'b00 ? 2'b01 :
!reset && count == 2'b01 ? 2'b10 :
!reset && count == 2'b10 ? 2'b11 :
!reset && count == 2'b11 ? 2'b00 :
count ;

assign out
= out == 2'b00 ? 1'b0 :
out == 2'b01 ? 1'b0 :
out == 2'b10 ? 1'b1 : 1'b1 ;

endmodule

Or, more simply:
// 2-bit clock divider with reset

module ex67
(output logic [1:0] count,
output logic out,
input logic reset, clk) ;

always_ff @(posedge clk) count
<= reset ? 2'b00 :

count == 2'b11 ? 2'b00 :
count + 1'b1 ;

assign out = count == 2'b10 || count == 2'b11 ;

endmodule

2

0 3 ps 6 ps 9 ps 12 ps

xx 00 01 10 11 00 01 10

clk=0
count[1:0]=01
out=0
reset=0

Counters

A counter is a common example of a state machine.
Typical inputs include those to restart the sequence
(typically called reset), to pause or continue the se-
quence (hold or enable), or change the order of the
values generated (e.g. up/down).
Exercise 6: Show the state transition diagram and table for a 2‑bit
counter with reset, enable, and down inputs. reset should have
priority over enable which should have priority over down. Write
the Verilog.

Timers and Clock Dividers

It takes𝑁 clock periods for a counter to count down3
from𝑁 −1 to 0. If the clock period is 𝑇 seconds then
the time taken is𝑁𝑇 seconds. A circuit can thus cre-
ate a delay of𝑁𝑇 seconds by counting𝑁 clock cycles4
Exercise7:Whatvalueof𝑁would result ina20msdelay if theclock
frequency is 50MHz? Howmanybits are needed for this timer’s reg‑
ister?
If the counter is reset to 𝑁 − 1 when it reaches

0 then the count values will be periodic with a pe-
riod 𝑁𝑇. If some event happens each time the count
reaches a specific value (e.g. 0) then this event hap-
pens with period 𝑁𝑇 (and thus a frequency 1/𝑁𝑇).
Exercise 8: Assume the timer above is reset to𝑁 − 1 each time
it reaches 0. For how long is the register value 0? What are the pe‑
riod and frequency of a signal that is inverted each time the count
reaches 0?

State Encodings

States may be represented (“encoded”) in different
ways:

Binary States are encoded as binary numbers. This
requires the fewest number of flip-flops. It is
used for state machines with many states such
as counters. In the above example the binary en-
coding of the states would be 00, 01, 10 and 11.

3Timers traditionally count down from𝑁−1 to 0 rather than
up from 0 to 𝑁 − 1 because it’s simple to determine when the
count reaches 0: adding−1 does not cause a carry.

4The time includes clock cycles during which the counter has
values𝑁 − 1 through 0 inclusive.

One-Hot There is one flip-flop for each state. Only
oneflip-flop at a time can be set to 1. This is used
when there are few states because simplifies the
next-state and output logic. In the above exam-
ple a one-hot encoding might be 1000, 0100,
0010 and 0001.

Output Each state is encoded as the output for that
state. This eliminates the need for any logic to
determine the output as a function of the state.
However, this is only possible when the output
is different for each state. The above example
could not use an output state encoding because
the output is 0 for states 00 and 01 and the out-
put is 1 for states 10 and 11.

Input The state encoding is a sequence of previous
inputs. This is used when the output can be de-
termined from a small number of previous in-
puts. For example, a combination lock might
unlock after the correct sequence of inputs.

Exercise 9: Howmany bits need to be considered to detect a spe‑
cific state when a binary encoding is used? How many need to be
considered if a one‑hot encoding is used?
Exercise10: Ifweused8‑bits of state information, howmany states
could be represented? What if we used 8 bits of state but used a
“one‑hot” encoding?

3

	Introduction
	Registers
	State Machines

	State Machine Descriptions
	Truth Tables
	State Transition Diagrams
	Simplifications
	State Machines in Verilog

	Counters
	Timers and Clock Dividers

	State Encodings

