
ELEX 2117 : Digital Techniques 2
2024 Fall Term

HDL Idioms

This lectures describes some common HDL constructs and their corresponding hardware implementations.
After this lecture you should be able to convert a Verilog description into a block diagram, and convert a block diagram into
a Verilog description.

Arrays

Variables may have (multiple) “packed” and “un-
packed” dimensions.

Packed dimensions are those given before the sig-
nal name. These bits are stored contiguously
(“packed”) and the packed item can be treated as a
scalar – a single number – in expressions. Packed di-
mensions typically model a word or bit fields within
a word. For example, logic [3:0][7:0] ax ;
would describe a 32-bit word composed of 4 bytes of
8 bits and ax[3] would be the most-significant byte
and ax[0][7:4] would be the most-significant nyb-
ble of the least-significant byte.

Unpacked dimensions appear after the signal
name. These bits may not necessarily be stored con-
tiguously. Unpacked dimensions model memories
where only one element can be accessed at a time.
For example: logic [7:0] rom [32] ; would
model a 32-byte memory.
In array references, the unpacked dimension(s) are

specified first, followed by the packed dimensions (if
any). For example, rom[31][0] would be the least-
significant bit of the last word in the rom above.

Common HDL Idioms

Logic synthesizers such as Quartus convert HDL de-
scriptions into circuits (actually, netlists). They do
this by recognizing a small number of idioms.
You must be able to visualize the hardware that

would be generated by an HDL description in or-
der create efficient designs. This section describes
some commonHDL constructs and their correspond-
ing hardware implementations.
The following HDL constructs are typically syn-

thesized as follows:

• logical operators are converted to logic gates as
you would expect.

• arithmetic and comparison operators are con-
verted to blocks of combinational logic imple-
menting the required operation.

• access to a value in an unpacked array is a im-
plemented as read-only memory (ROM). Access
to bits in packed arrays is implemented as a con-
nection to specific bits.

• ternary operators 1 are converted intomultiplex-
ers; nested as necessary

• an output to which ‘z’ can be assigned is con-
verted to a tri-state output.

• always_ff blocks with sensitivity lists con-
taining signal edges (@(posedge...)) are con-
verted to registers. The signals assigned to
within the always_ff block are the register out-
puts.

• combinational logic that computes the values
assigned to register inputs is used to describe
specialized sequential logic such as counters
and shift registers. The register’s current value
is often used to compute the next value.

Exercise 1: Using the schematic symbols shown below, convert
each of the following System Verilog expressions into a schematic.

port

connector

n
bus

0

1a

b

c

d

d = c ? a : b

D Qa b

c

always_ff @(posedge c)
 b <= a ;

ma d

d = m[a]

x

y

z

z = x op y

Memory

Combinational LogicSignal Connections Multiplexer

Register or FF

x op y

1And if/else/case statements, when allowed.

lec11.tex 1 2024-11-26 21:11

y = a ^ b ;

y = a < b ;

y = y+1 ;

y = a[3] ;

y = a[3] ? 4 : a[2] ? 3 : a[1] ? 2 :
a[0] ? 1 : 0;

y = table[x] ;

y = y < b ? y+1 : y-1 ;

y = oe ? d : 16'hzzzz ;

Exercise 2: Using the schematic symbols shown above, convert
each of the following System Verilog expressions into a schematic.

always_ff@(posedge clk)
y = a ;

always_ff@(posedge clk)
y[7:0] = {y[6:0],a} ;

always_ff@(posedge clk)
y = y_next ;

assign y_next = e ? a : y ;

always_ff@(posedge clk)
y = y_next ;

y_next = r ? '0 : e ? y+1'b1 : y ;

assign next = (reset || done) ? '0 : cnt+'b1 ;

always_ff@(posedge clk)
mosi = mosi_next ;

assign mosi_next = falling ? sr[31] : mosi ;

always_ff@(posedge clk)
cnt = cnt_next ;

// logic [31:0] mem [15:0]
always_ff@(posedge clk) begin

mem[p] = din ;

// logic [31:0] mem [15:0]
dout = mem[p] ;

p_next = valid && rdy ? p + 1'b1 : p ;

// i, j are logic[4:0]; w, sclk are logic
nxt = w ? 5'd7 : (j==N && sclk) ? i-1 : i ;

readdata = {31'b0,csn} ; // csn is logic

nxt = ~d[8] ;

Schematics to HDL

It’s also important to be able to write the HDL that
will result in a specific hardware architecture.
Each circuit element is converted into the corre-

sponding HDL construct and named signals are used
to connect them according to the circuit topology.
Exercise 3: Write System Verilog that would generate each of the
following schematics. Include any required signal declarations (us‑
ing logic).

a

b

a!=b

3

3

x

y

z

d

c

1

3

4
+

A D
c

[0]

[1]

[2]

r

h

g

4
s

clk

16x3 ROM

2-to-4 decoder

D3

D2

D1

D0

2

a

b
c

d

x

oe

1616

oen

a ab

D Q

clk

d q

S

D

R

Q

Q

4

4

4

4

4

s

d

r

q

q_n

clk

2

125
8

0

1
8

+

1
D Q

8

clk

p[i]

q[i] 0

1
0

1
D Q

l h clk

q[i]

D Q

clk

ud

a

b

a<b

a

b

a<b

a

b

a>b

4

12

4
c

0
1

D Q1
+

1
-

0

1
0

1

0

1

ud

clk

4
c

D Q
q[i]d[i]

D Q
q[0]d[0]

D Q

q[N-1]d[N-1]

clk

soutsin

N stages

3

	Arrays
	Common HDL Idioms
	Schematics to HDL

