Introduction to Digital Design with Verilog HDL

Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was assign y = (a ^ b) | c ;?

Exercise 3: What are the widths and values, in decimal, of the following:

owing:	width	value	
4'b1001?	4	٩	
5'd3?	5	3	
6'h0_a?	6	10	
3?	32	3	

Exercise 4: If the signal i is declared as logic [2:0] i;, what is the 'width' of **i**?

3

If i has the value 6 (decimal), what is the value of $i[2]? \simeq |$

Exercise 5:

How would you specify the bit marked A in the diagram above?

W [1] [6]

The bits marked B?

w[2][3:0] w[o]The least-significant byte?

Exercise 6: What are the values of the following expressions: (!) <u>4' b010</u>?

$$1'b0$$

 $2 \sim 4'b0010$
 $b | 101$
 $32'b0 32'h0$
 $32'd0$
 $32'd0$

37b0

 \rightarrow

4'b | 10]

$$32'b0$$
 $3z'h0$
 $32'b0$ $32'd0$
 $a)?
 $2|\beta \rightarrow |'b|$
 $1|\beta \rightarrow 32'b1 = \frac{be couse vesut}{must be computed}}$
 $051ng width of 052'b) \rightarrow 32'hfs ff ff e final vesutt}$
 $1'b(\beta + 32'd\beta \rightarrow 32'b0)$ $32'hfs ff ff e final vesutt}$
 $1'b(\beta + 32'd\beta \rightarrow 32'b0)$ $32'hfs ff ff e ff fe$
 $naije vesult$
 $a ctual vesutt$$

Exercise 7: Use slicing and concatenation to compute the byteswapped value of an array **n** declared as **logic** [15:0] **n**.

$$\begin{cases} 2010 & 1013 \rightarrow 010101 & 37 \\ 010 + 101 \rightarrow 111 & 7 \\ 15 \cdot 8 \cdot 7 \cdot 0 \\ 15 \cdot 8 \cdot 7 \cdot 0 \\ 15 \cdot 9 & 7 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 17 & 9 \\ 10 & 101 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 & 100 \\ 10 &$$

Exercise 8: If n has the value 16 ' h1234, what is the value and width

Exercise 9: Use concatenation to shift **n** left by two bits.

(n)
$$16^{1}hi 2 3 4$$

 $= 2^{1}boo$
 $[15:o]$
 $\{n[13:o], 2^{1}d0, 2$
 $\log ic a [7:o], 100$
 $\log ic b [2:o]; 100$

Exercise 10: Use concatenation to assign the high-order byte of **n** to **a** and the low-order byte to **b**.

$$assign \{a, b\} = n ; k = 16 - 24$$

= $\{n[i_{5}:8], n[i_{2}:0]\};$

Exercise 11: An array declared as **logic** [15:0] n; and has the value 16'h1234. What are the values and widths of the following expressions?

3'6000 -33'ho

n[15:13]

		with	
n>>4 ঈ	n >74	14	16123

$$n[7:0] - n[3:0]$$
 ? 4
 f 8
 $g'h34$ 4'h4
 $g'h30$

6000 0661 0010 0011 0100 as the 161

16 4 1234

d

1110

9

[10] [100

С

0100

(011

b

Ι,Ρ)

Exercise 13: Draw the schematics corresponding to:

Exercise 14:

// concatenation: logic [3:0] x = { 2'b00, 2'b11 };) d(M , $4 \dots 0$ // array literal logic [0:1] [3:0] z = '{ 2'b11, 3'b101 }; 2 dm $\begin{cases} 0 \dots 0 \\ 3 \dots 0 \\ 3 \dots 0 \end{cases}$

What are the dimensions and initial values of \mathbf{x} , and \mathbf{z} in the examples above?

Exercise 15: Write the truth table for a one-bit adder with carry. Define an array that implements this function. Write an expression that uses this array to find the sum and carry of logic signals **a** and **b**.

Exercise 16:

assign y = a + 1;

Some software warns about truncation. How could you re-write the **assign** statement to avoid such a warning?

$$y = a + l'bl;$$

Exercise 17: Write an **always_ff** statement that toggles (inverts) its output on each rising edge of the clock.

Identify the following in the diagram above: component names, component "instance names," component port names, module port names. Label the signal t in the schematic.

Exercise 19: Rewrite the **ex60** module using operators. Which version – "structural" or "behavioural" – is easier to understand?