Introduction to Digital Design with Verilog HDL

Exercise 1: What changes would result in a 3-input OR gate?

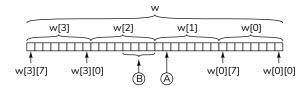
Exercise 2: What schematic would you expect if the statement was assign y = (a ^ b) | c ;?

Exercise 3: What are the widths and values, in decimal, of the following:

4'b1001?

5'd3?

6'h0_a?


3?

Exercise 4: If the signal i is declared as logic [2:0] i;, what is the 'width' of i?

If i has the value 6 (decimal), what is the value of i[2]?

Ofi[0]?

Exercise 5:

How would you specify the bit marked A in the diagram above?

The bits marked B?

The least-significant byte?

Exercise 6: What are the values of the following expressions: **!4'b010**?

~4'b010?

0+~(!0)?

Exercise 7: Use slicing and concatenation to compute the byteswapped value of an array **n** declared as **logic** [15:0] **n**.

Exercise 8: If **n** has the value **16** ' **h1234**, what is the value and width of:

Exercise 9: Use concatenation to shift \mathbf{n} left by two bits.

Exercise 10: Use concatenation to assign the high-order byte of $\bf n$ to $\bf a$ and the low-order byte to $\bf b$.

Exercise 11: An array declared as logic [15:0] n; and has the value 16'h1234. What are the values and widths of the following expressions?

n[15:13]

!n

~n[3:0]

n>>4

n + 1'b1

n[7:0] - n[3:0]

Exercise 12: What are the width and value of the expression: 3 ?

16'd10 : 8'h20?

If x has the value 0, what is the value of the expression: x ?

1'b1 : 1'b0?

If **x** has the value -1?

```
Exercise 13: Draw the schematics corresponding to:
```

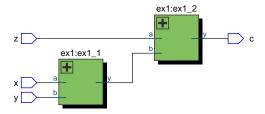
y = a ? b ? c ? s3 : s4 : s2 : s1 ;

Exercise 14:

```
// concatenation:
logic [3:0] x = { 2'b00, 2'b11 } ;
// array literal
logic [0:1] [3:0] z = '{ 2'b11, 3'b101 } ;
```

What are the dimensions and initial values of ${\bf x}$, and ${\bf z}$ in the examples above?

Exercise 15: Write the truth table for a one-bit adder with carry. Define an array that implements this function. Write an expression that uses this array to find the sum and carry of logic signals **a** and **b**.


Exercise 16:

```
assign y = a + 1;
```

Some software warns about truncation. How could you re-write the **assign** statement to avoid such a warning?

Exercise 17: Write an always_ff statement that toggles (inverts) its output on each rising edge of the clock.

Exercise 18:

Identify the following in the diagram above: component names, component "instance names," component port names, module port names. Label the signal ${\bf t}$ in the schematic.

Exercise 19: Rewrite the **ex60** module using operators. Which version – "structural" or "behavioural" – is easier to understand?