Solutions to Quiz 2

There were two versions of each question. The values and the answers for both versions are given below.

Question 1

(a) A signal named $\overline{w e t}$ (or $\overline{\text { dry }}$) is at a high (or low) logic level. Is it wet (or dry) (yes or no)?
(b) What logic level would you expect if an alarm signal was indicating a warning and the name of an output was alarm_n (or warning_n) (high or low)?

Answers

The names of each of these signals indicates they are active-low.
(a) If the signal is low it is true (yes), if it is high it is false (no):

- No, since $\overline{\text { wet }}$ is high it is not wet.
- Yes, since $\overline{d r y}$ is low it is dry.
(b) For an active-low signal, when a condition is true (in this case, the alarm or warning is true) then the logic level should be low.

Question 2

Fill in the blank boxes in the table below so that all values in each row are consistent (agree with each other). The first row is an example.

signal	truth name (T / F)	truth value in an expres- sion $(0 / 1)$	logic level (H / L)	Verilog value when input $(0 / 1)$
active	\mathbf{T}	$\mathbf{1}$	\mathbf{L}	$\mathbf{0}$
smoke*				$\mathbf{1}$
hot	\mathbf{T}			

signal	truth name (T/F)	truth value in an expres- sion $(0 / 1)$	logic level (H / L)	Verilog value when input $(0 / 1)$
$\overline{\text { running }}$	T	$\mathbf{1}$	L	$\boldsymbol{0}$
clear				0
cold $*$	F			

Answers

We can work from the given values and the signal name to fill in the remaining columns.

The input value and logic level must agree (0 is L (low) and 1 is $\mathrm{H}(\mathrm{igh})$) regardless of whether the signal is active-high or active-low.

Similarly the truth value and the truth value used in an expression must agree (0 is F (alse) and 1 is T(rue)).

However, the relationship between truth value and logic level is determined by whether the signal is active-high ($\mathrm{T}($ rue) is $\mathrm{H}(\mathrm{igh})$) or active-low (T (rue) is L(low)).

Following these rules we can fill in the tables:

signal	truth value name	truth value in an expres- sion $(0 / 1)$	logic level $(\mathrm{H} / \mathrm{L})$	Verilog value when input $(0 / 1)$
active	\mathbf{T}	$\mathbf{1}$	\mathbf{L}	$\mathbf{0}$
smoke*	\mathbf{F}	$\mathbf{0}$	\mathbf{H}	$\mathbf{1}$
hot	\mathbf{T}	$\mathbf{1}$	\mathbf{H}	$\mathbf{1}$

[^0]| signal | truth
 name
 (T / F) | truth
 value
 in an
 expres-
 sion
 $(0 / 1)$ | logic
 level
 (H / L) | Verilog
 value
 when
 input
 $(0 / 1)$ |
| :--- | :---: | :---: | :---: | :---: |
| running | T | $\mathbf{1}$ | L | 0 |
| clear | F | $\mathbf{0}$ | L | $\mathbf{0}$ |
| cold $*$ | F | $\mathbf{0}$ | H | $\mathbf{1}$ |

Question 3

A module named m is declared as:

```
module m
    #(parameter i=4)
    ( input logic [7:0] x, y, c ) ;
```

endmodule

Another module, named top is declared as:
module top ;
logic [7:0] a, b, c ;
assign $\mathbf{a}=1$;
assign $\mathbf{b}=2$;
assign $c=3$;
$m \operatorname{m0}(a, b, c)$;
m \#(1) m1 (.y(b),.x(a),.*) ;
m \#(.i(2)) m2 (c-a,b,a+1) ;
endmodule

Or:
module top ;
logic [7:0] a, b, c ;
assign $a=3$;
assign $b=2$;
assign $c=1$;
$m \mathrm{~m} 0(\mathrm{a}, \mathrm{b}, \mathrm{c})$;
m \#(2) m1 (.y(b),.x(a),.*) ;
m \#(.i(1)) m2 (a-c,b,a+1) ;
endmodule

Fill in the following table with the values of \mathbf{i}, \mathbf{x}, y and c in each instance of the m module in the top module:

in- stance	i	x	y	c
m0				
m1				
m2				

Answers

Instance m0 A parameter value is not given so the default value (4) is used. The signals are matched to ports according to order. In the first version the values are $1,2,3$. In the second they are $3,2,1$.

Instancem1 The parameter value is specified as 1 (or 2) and the first two signals are matched to ports by name (y is set to b, x to a) and the remaining signal(s) are matched by the wildcard according to matching names so \mathbf{c} is matched with \mathbf{c}. In the first version this sets y to $2, x$ to 1 and c to 3 . In the second version this sets y to $2, x$ to 3 and c to 1 .

Instance m2 The parameter value is set using an explicit name (i) to 2 (or 1). The signals are matched by position again. In the first version the values of the expressions are $c-a=3-1=2, b=2$, and $a+1=1+1=2$. In the second they are $a-c=3-1=2, b=2$, and $a+1=3+1=4$.

Version 1

in- stance	\mathbf{i}	x	y	c
$m 0$	4	1	2	3
$m 1$	1	1	2	3
$m 2$	2	2	2	2

Version 2

in- stance	i	x	y	c
m 0	4	3	2	1
m 1	2	3	2	1
m 2	1	2	2	4

As a check, the following simulation:

```
module m
    #(parameter i=4)
    ( input logic [7:0] x, y, c ) ;
    initial #1 $display(i, x, y, c) ;
endmodule
module top1 ;
    logic [7:0] a, b, c ;
    assign a = 1 ;
    assign b = 2 ;
    assign c = 3 ;
    m m0 (a,b,c) ;
    m #(1) m1 (.y(b),.x(a),.*) ;
    m #(.i(2)) m2 (c-a,b,a+1) ;
endmodule
module top2 ;
    logic [7:0] a, b, c ;
    assign a = 3 ;
    assign b = 2 ;
    assign c = 1 ;
    m m0 (a,b,c) ;
    m #(2) m1 (.y(b),.x(a),.*) ;
    m #(.i(1)) m2 (a-c,b,a+1) ;
```

endmodule
module top ;
top1 t1 () ;
top2 t2 () ;
endmodule
outputs the following ${ }^{1}$:

$\#$	4	1	2	3
$\#$	1	1	2	3
$\#$	2	2	2	2
$\#$	4	3	2	1
$\#$	2	3	2	1
$\#$	1	2	2	4

[^1]
[^0]: Or:

[^1]: ${ }^{1}$ The order of execution of the initial statements in each instance of m can be determined from the values of i.

