Solutions to Quiz 1

There were two versions of each question. The values and the answers for both versions are given below.

Question 1

Write a Verilog module named allbits (or anybits) that has one 10-bit logic input named v and a (one-bit) logic output named a. The value of a should be set to the and-(or or-)reduction of v.

Answers

```
module allbits
    ( input logic [9:0] v,
    output logic a ) ;
    assign a = &v ;
```

endmodule
module anybits
(input logic [9:0] v,
output logic a) ;
assign $a=\mid v$;
endmodule

Question 2

Write a Verilog literal that has a width of 6 (or 7) bits, uses a hexadecimal (or binary) base and has a value of 12 (decimal).

Answers

6'hc or 7'b1100.

Question 3

Fill the table below with the value of each expression as a Verilog numeric literal including the correct width and the correct value in hexadecimal base. Assume the following declarations:

```
logic [7:0] x ;
logic [3:0] y ;
```

and that \mathbf{x} has the value $8^{\prime} \mathrm{h} 3 \mathrm{a}$ (or 8^{\prime} ha3) and that y has the value 4'b1001. The first row has been filled in as an example.

Answers

For $x=8$ ' h 3 a :

expression	value
$x[3: 0]$	4'ha
$\sim x[2: 0]$	3 'h5
\{ $\mathrm{x}[7: 4], 4 \mathrm{~b} 0011$ \}	8'h33
${ }^{\wedge} \mathrm{y}$	1 'h0
$x[0] ? 1: 2$	32' h2
x >> 2	8' he

and for $\mathrm{x}=8$ ' $\mathrm{ha3}$:

expression	value
$x[3: 0]$	4' h3
$\sim x[2: 0]$	3' h4
\{ $x[7: 4], 4$ 'b0011 \}	8' ha3
${ }^{\wedge} \mathrm{y}$	1 ' h0
$x[0] ? 1: 2$	32 ' h1
x >> 2	8'h28

Question 4

Draw a block diagram (a schematic) that corresponds to the following Verilog code:

```
logic [7:0] x, y, z ;
logic a, b ;
assign z = a ? x : b ? y : z ;
```

or:

```
logic [7:0] x, y, z ;
logic a, b ;
assign z = a ? ( b ? x : y ) : z ;
```

Follow the guidelines in the Diagrams section of the Report and Video Guidelines document.

Note: I unintentionally re-used the signal z as both an input and output of a multiplexer. This creates a "latch." Latches are level-sensitive - rather than edge-sensitive - memory elements. Latches should be avoided and are not commonly used in modern logic design.

b
or:

Quartus generates the following (using a separate output signal, Z):

and:

