
ELEX 2117 : Digital Techniques 2
2023 Fall Term

Solutions to Midterm 2

There were two versions of each question. The values and the answers for both versions are given below.

Question 1

The following waveform shows the signals on an SPI
interface. What value was transmitted from the mas-
ter to the slave (or from the slave to the master) as-
suming the bits were transferred most-significant-bit
first? Give you answer as a Verilog numeric literal in
hexadecimal base, including the width. Show your
work.

SS*

SCLK

MOSI

MISO

Answers

The convention described in the lecture notes is that
bits are transferred on the rising edge of SCLK when
SS is asserted (low). The following diagram shows
the value of the bits transferred in each direction:

SS*

SCLK

MOSI

MISO

1 1 1 1 1

1 1 1 1

0

0 00

0 0

0

From the master to the slave (MOSI) the value
transferred is 8’b1110_1001 which is 8’hE9 .
From the slave to the master slave (MISO) the

value transferred is 8’b0110_0110 which is 8’h66 .

Question 2

For the following testbench:
module mt2 ;

integer n ;
logic clk ;

initial begin
// $dumpfile("ex74a.vcd"); $dumpvars ;
n = 1 ;
clk = 0 ;

wait (n >= 5) $stop ;
end

always #4us clk = ~clk ;

always @(posedge clk) begin
$display("n = %d",n) ;
n = n + 1 ;

end

endmodule

or
module mt2 ;

integer n ;
logic clk ;

initial begin
// $dumpfile("ex74b.vcd"); $dumpvars ;
n = 0 ;
clk = 0 ;
wait (n > 5) $stop ;

end

always #2us clk = ~clk ;

always @(posedge clk) begin
$display("n = %d",n) ;
n = n + 1 ;

end

endmodule

(a) What is the frequency of the clk signal?
(b) Write the first line that is printed by this test-

bench:
(c) Write the last line that is printed by this test-

bench:

Answers

(a) The clock is inverted once every 4 µs (or 2 µs) so
the period is twice this, 8 µs (or 4 µs). The fre-
quency is twice this, 125 kHz (or 250 kHz).

(b) The first line printed by this testbench is for the
initial value of n which is 1 (or 0).

(c) The always block prints the value of n and in-
crements it. The simulation stops when the
wait() condition first becomes true. This hap-
pens when n>=5 (5) (or when n>5 (6)). The last

midterm2sol.tex 1 2023-11-04 23:03

line printed will be for the previous value of n,
which is 4 (or 5).

The following waveforms show the clock period in
each case:

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us 10 us

clk

0 1 us 2 us 3 us 4 us 5 us

clk=0

The following listings show the simulation output
for each case:

n = 1
n = 2
n = 3
n = 4

and

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5

Question 3

The following Verilog shows the declaration of a
module named bcnt. The diagram shows how two of
these are connected within amodule named twobit:

module bcnt
(input logic c, a,

output logic x, y) ;
// ...
endmodule

c

a

x

y

c

a

x

y

bcnt:b0 bcnt:b1

bin bout

twobit

The identifiers above the boxes show the module
and instance names. The identifiers above the ports
show the twobitmodule’s port names.
Write a SystemVerilogmodule named twobit that

implements the diagram above. Declare any signal(s)
required to implement the twobit module. Do not
write the bcntmodule. Youmay use any style to con-
nect signals to ports. Follow the course coding guide-
lines but omit comments.

Answers

The following schematic shows the names of three
internal signals used to connect the two bcnt mod-
ules:

c

a

x

y

c

a

x

y

bcnt:b0 bcnt:b1

bin bout

twobit

t0

t1

t2

The code using positional signal-to-port mappings
is:
module twobit
(input logic bin,
output logic bout) ;

logic t0, t1, t2 ;

bcnt b0 (t0, bin, t1, t2) ;
bcnt b1 (t1, t2, t0, bout) ;

endmodule

The code using explicit signal-to-port mappings is:
module twobit
(input logic bin,
output logic bout) ;

logic t0, t1, t2 ;

bcnt b0 (.c(t0), .a(bin), .x(t1), .y(t2)) ;
bcnt b1 (.c(t1), .a(t2), .x(t0), .y(bout)) ;

endmodule

The following schematic is generated by Quartus
for either solution:

bin

bcnt:b0

c

a x

y

bcnt:b1

c

a x

y
bout

2

0 10 ps 20 ps 30 ps

reset

in

clk

out

Figure 1: Simulation results for Question 4 solution.

Question 4

A state machine has an output named out and three
inputs named reset, clk, and in.
out changes only on the rising edge of the clock,

clk. out is set to 0when reset is asserted. out is set
to 1 when reset has been low and in has been high
for 3 consecutive rising edges of the clock. Once out
is set to 1, it remains set to 1 until reset is asserted.
Example waveforms are shown.
Fill in the missing code in the following Verilog

module so as to implement this state machine. You
may use any state encoding. Follow the course cod-
ing guidelines but omit comments.

module pulsedetect
(input logic reset, clk, in,

output logic out) ;

endmodule

clk

reset

out

in

clk

reset

out

in

Answers

The state transition diagram below shows a possible
solution. The states are labelled A through D.

0
A
0 0 1

reset in in in

!in !in

B C D

Three different solutions are shown below along
with a testbench. The first solution implements the
state transition diagram shown above using a binary
state encoding. The second solution uses a shift reg-
ister to store the previous three input bits until there
are three consecutive ones. The third solution uses
two state machines: one counts the number of con-
secutive 1 bits and the second is a flip-flop that’s set
when the countwill reach 3 and only cleared on reset.

module pulsedetect
(input logic reset, clk, in,
output logic out) ;

logic [1:0] count ;

always_ff @(posedge clk)
count <= reset ? 2'b00 :

count == 2'b00 && in ? 2'b01 :
count == 2'b01 && in ? 2'b10 :
count == 2'b10 && in ? 2'b11 :
count == 2'b01 && !in ? 2'b00 :
count == 2'b10 && !in ? 2'b00 : count ;

assign out = count == 2'b11 ? '1 : '0 ;

endmodule

module pulsedetect
(input logic reset, clk, in,
output logic out) ;

logic [2:0] bits;

always_ff @(posedge clk)
bits <= reset ? '0 : &bits ? bits : {bits,in} ;

assign out = &bits ;

endmodule

module pulsedetect
(input logic reset, clk, in,
output logic out) ;

logic [1:0] cnt ;

always_ff @(posedge clk)
cnt <= !reset && in ? cnt + 1'b1 : '0 ;

always_ff @(posedge clk)
out <= reset ? '0 : in && cnt == 2'b10 ? '1 : out ;

endmodule

3

module pulsedetect_tb ;

logic reset, clk, in ;
logic out ;

pulsedetect p0 (.*) ;

initial begin
$dumpfile("ex76_tb.vcd");
$dumpvars ;
{reset,clk,in} = 3'b100 ;

// first sample waveform
#2 reset = '0 ;
#2 in = '1 ;
#6 in = '0 ;
#2 reset = '1 ;
#4 ;

// second sample waveform
#2 reset = '0 ; in = '1 ;
#2 in = '0 ;
#2 in = '1 ;
#4 in = '0 ;
#6 ;
$stop ;

end

always
#1 clk = ~clk ;

endmodule

Each solution produces the simulation results in
Figure 1 which matches the examples.

4

	Question 1
	Answers

	Question 2
	Answers

	Question 3
	Answers

	Question 4
	Answers

