
ELEX 2117 : Digital Techniques 2
2023 Fall Term

Solutions to Midterm 1

There were two versions of each question. The values and the answers for both versions are given below.
Version 2 - reversed the first two transition conditions for the binary encoding version of Question 4.
Version 3 - reversed the labelling of the two solutions for Question 1.

Question 1

Fill the table below with the value of each expres-
sion as a Verilog numeric literal including the correct
width and the correct value in hexadecimal base. As-
sume the following declarations:

logic [7:0] x ;
logic [3:0] y ;

and that x has the value 8'h3b (or 8'hb3) and that y
has the value 4'b0110. The first row has been filled
in as an example.

expression value

x[3:0] 4'hb
(or 4'h3)

!x[4]|x[3]

{ ~y, x[7:4] }

x << y[3:2]

x[7] ? 3'b1 : 4'd2

x + 1

Answers

For x=8'hb3:

x[3:0] 4'h3

!x[4]|x[3] 1'h0

{ ~y, x[7:4] } 8'h9b

x << y[3:2] 8'h66

x[7] ? 3'b1 : 4'd2 4'h1

x + 1 32'hb4

and for x=8'h3b:

x[3:0] 4'hb

!x[4]|x[3] 1'h1

{ ~y, x[7:4] } 8'h93

x << y[3:2] 8'h76

x[7] ? 3'b1 : 4'd2 4'h2

x + 1 32'h3c

Question 2

Write a SystemVerilogmodule named pwmwith three
inputs (clock, enable, and w) and one output (out)
that implements the schematic below. Follow the
course coding conventions.

D Q

0

1

8
count

clock

enable

count<w

count+1

0
out

w

or

D Q

0

1

8
count

clock

enable && count<w

count+1

0
out

w

1enable

Answers

The question makes more sense if w is an 8-bit value,
but the schematic shows it as a single bit. Solutions
that assume w is a 1-bit signal were also marked cor-
rect.
The two solutions below correspond to the two

schematics.

midterm1sol.tex 1 2023-10-16 11:08

module pwm (input logic clock, enable,
input logic [7:0] w,
output logic out) ;

logic [7:0] count ;

always_ff @(posedge clock)
count <= count + 1'b1 ;

assign out = count < w ? enable : '0 ;

endmodule

module pwm_ (input logic clock, enable,
input logic [7:0] w,
output logic out) ;

logic [7:0] count ;

always_ff @(posedge clock)
count <= count + 1'b1 ;

assign out = enable && count < w ? '1 : '0 ;

endmodule

The schematics generated by Quartus are:

w[7..0]

clock

enable

+

Add0CIN1'h0

A[7..0]

B[7..0]8'h1

OUT[7..0]

count[7..0]

D

CLK

SCLR
8'h0

Q

<

LessThan0CIN1'h0

A[7..0]

B[7..0]

OUT

out
01'h0

1 out

w[7..0]

clock

enable

+

Add0CIN1'h0

A[7..0]

B[7..0]8'h1

OUT[7..0]

count[7..0]

D

CLK

SCLR
8'h0

Q

<

LessThan0CIN1'h0

A[7..0]

B[7..0]

OUT

out

out

Question 3

A state machine has reset and clock inputs, and a
pulse output. Whenever reset is asserted, the out-
put is set to 0. When reset is de-asserted, pulse is
set to 1 for three clock cycles and then it is set to 0 and
it stays at 0 until reset is asserted again. Write the
next-state truth table and the output truth table for
this state machine. Use a one-hot (or binary) state
encoding.

Answers

The state transition diagrams for the one-hot and bi-
nary encodings are shown below:

000
0

001
1

010
1

011
1

100
0

reset

00001
0

00010
1

00100
1

01000
1

10000
0

reset

A correct solution using only four states (one with
an output of zero and three with an output of one) is
not possible because there are two states where the
output is 0: one state when reset is asserted and one
state when reset is not asserted. The question re-
quires that the output stay at 0 indefinitely in both
of these states.
Many students gave a solution where the single-bit

pulse outputwas used as the state. This is clearly not
possible as the state machine needs to output a 1 for
three clock cycles. In this respect the state machine
is similar to the first state machine described in the
lectures and the state machine in the next question.
No marks were awarded for solutions with an in-

sufficient number of states since the state transition
table and the output table are necessarily incorrect.
The simplified state transition and output truth ta-

bles corresponding to the state transition diagrams
above are:

state reset next
state

xxxxx 1 00001
10000 x 10000
𝑛 x 𝑛 << 1

state output
00001 0
10000 0
xxxxx 1

and

state reset next
state

xxx 1 000
100 x 100
𝑛 x 𝑛 + 1

state output
x00 0
xxx 1

Question 4

Write a System Verilog module named esc that im-
plements the state machine described by the follow-
ing state transition diagram. The module has four
one-bit inputs: clear, even, odd, and clock (a
clock). It has a one-bit output named done. You may
use any name(s) for signal(s) internal to the module.

2

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us 10 us 11 us 12 us 13 us 14 us 15 us 16 us 17 us 18 us

xxxx 0001 0010 0100 1000

xx 00 01 10 11

clear=1

clock=0

done=x

even=0

odd=0

state[3:0]=xxxx

clear=1

clock=0

done=x

even=0

odd=0

state[1:0]=xx

Figure 1: Simulation results for Question 4 solution.

Follow the course coding conventions.

0001 0010

clear even

0100

odd

1000

0 10 0

even || odd

or

00 01

clear even

10

odd

11

0 10 0

even && odd

Answers

module esc (input logic clear, even, odd, clock,
output logic done) ;

logic [3:0] state ;

always_ff @(posedge clock)
state <= clear ? 4'b0001 :

state == 4'b0001 && even ? 4'b0010 :
state == 4'b0010 && odd ? 4'b0100 :
state == 4'b0100 && (even || odd) ?

↪ 4'b1000 :
state ;

assign done = state[3] ;

endmodule

module esc_ (input logic clear, even, odd, clock,
output logic done) ;

logic [1:0] state ;

always_ff @(posedge clock)
state <= clear ? 2'b00 :

state == 2'b00 && odd ? 2'b01 :
state == 2'b01 && even ? 2'b10 :
state == 2'b10 && even && odd ? 2'b11 :
state ;

assign done = state == 2'b11 ;

endmodule

The simulation results for the two modules are
shown in Figure 1.

3

	Question 1
	Answers

	Question 2
	Answers

	Question 3
	Answers

	Question 4
	Answers

