
ELEX 2117 : Digital Techniques 2
2023 Fall Term

Interfaces

Digital circuits are used to transfer data between modules and devices. This lecture describes the operation and design of
some common interfaces.
After this lecture you should be able to: classify an interface as serial or parallel and uni- or bi-directional and explain
the advantages of each; ; determine when data is transferred over a ready/valid interface; draw the schematic or write the
Verilog for an SPI transmitter or receiver; convert data transmitted over an SPI interface to the interface waveform(s) and
extract the data from these waveforms.

Parallel Interfaces

We’ve seen how data can be transferred between two
flip-flops by connecting the Q output of one flip-flop
to the D input of another and using a common clock:

D Q D Q

clock

If the two flip-flops are on different devices –
whether two IC packages or two pieces of equipment
– we can connect them this way to transfer data be-
tween them:

D Q D Q

clock

data data

interface

device1 device2

This is the simplest type of interface between two
devices and can transfer any number of bits in paral-
lel on the same clock edge.

Ready/Valid Interfaces

A transmitting device may not have data to transfer
on every clock edge. Or the receiving device may not
be ready to accept data on every clock edge. In this
case two “handshaking” signals can control the trans-
fer of data between devices.

transmitter

valid

ready

receiver

data

clock

valid

ready

data

clock

The transmitting device asserts a valid output
when its data output is valid. The receiving device as-
serts aready outputwhen it is ready to accept data on
the next clock edge1. Data is transferred only on clock
edges where both valid and ready are asserted.

valid

data

ready

clock

Exercise 1: Mark the clock edges where data is transferred.
Typically, the transmitter and receiver are con-

trolled by state machines and the valid and ready
outputs are asserted in specific state(s).
A device or module with an output will assert

valid when it enters a state in which its data output
is valid. It will stay in this state until the other device
has asserted ready which indicates that the data has
been accepted.
A device with a data input will assert ready when

it is in a state where it can accept data on the next
rising clock edge. It will stay in this state until a clock
edge where ready is asserted which will cause the
data to be loaded into a register in the device.
The state machine for a ready/valid interface is:

ready

valid

valid

ready

!ready

ready

!valid

valid

validready

ready
valid

(idle)

1This is sometimes called a FIFO (First-In First-Out) interface
and can also be used between modules.

lec7.tex 1 2023-10-24 22:49

This interface requires that both devices use the
same clock.

Serial Interfaces

The bits of a word can also be transferred over an in-
terface sequentially (serially), typically one bit at a
time. Although serial interfaces are more complex,
this is often more than offset by lower costs due to
fewer IC pins, smaller connectors, less PCB area, and
lower cost cables.

Example: SPI

The Serial Peripheral Interface (SPI, pronounced
”ehs-pea-eye” or “spy”)) is a common serial interface
between a “master” (typically a microcontroller) and
a “slave” (typically a peripheral IC). Applications in-
clude LCD controllers and SD cards.
The SPI interface has one data signal in each direc-

tion (named MOSI and MISO), a clock signal (SCLK)
and a (typically active-low) slave-select (SS) signal.

MOSI

MISO

SCLK SCLK

SS

MOSI

MISO

SCLK

microcontroller
 (master)

peripherals
 (slaves)

MOSI

MISO

SS

SS0

SS1

The following timing diagram shows the operation
of the bus:

MOSI/MISO msb lsb

SS*

SCLK

The data transfer begins when the master asserts
SS. On the following clock edges2 one bit is trans-
ferred. Typically, multiples of 8 bits are transferred,
most-significant bit (m.s.b.) first. SS is de-asserted
when the transfer is done. Note that the SPI interface
transfers the same amount of data in each direction.

2SPI interfaces can be configured so that the data is sampled
on either the rising or falling edge of SCLK.

MOSI

MISO

SCLK

SS*

Exercise 2: The diagram above shows a transfer over an SPI bus.
How many bits of data are transferred? What is the value, in deci‑
mal, of the data transferred from themaster to the slave? From the
slave to the master?
An SPI master interface can be implemented with

a shift register that has parallel inputs and outputs as
shown below:

D Q
0

1

0

1{q[6:0],MISO}

q

shift

load

txdata

rxdata

q[7] MOSI

clock

MISO

q
88

8

8
8

8

q

The shift register loads the eight MOSI bits to be
transmitted from txdata when load is asserted.
When shift is asserted a MISO bit shifts in on the
right and a MOSI bit shifts out on the left. At the end
of the transfer the eight received MISO bits can be read
in parallel from the shift register on rxdata.
An example of an interface to a CPU is shown be-

low. It has two 8-bit parallel data signals (rxdata
and txdata) and two control signals: ready, set
true when the interface can accept another byte and
valid, set true when another byte can be transmit-
ted.
The controller is a state machine that sequences

through 16 states to transmit a byte with two states
for each bit (one for SCLK high and one for SCLK low).

MOSI

SCLK

SS

 SPI
 master
 state
machine

valid

ready

 shift
register

MISO

 rxdata

c
lo

c
k

 CPU
interface

8
 txdata

lo
a

d

clock

s
h

ift

8

reset

2

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

The diagram below shows the waveforms for an
abbreviated (4-bit) transfer over an SPI interface:

valid/load

clock

state 0 0 1 2 3 4 5 6 7 8 0 0

shift

SS*

MOSI/MISO q[3] q[2] q[1] q[0]

SCLK

Exercise 3: Based on the diagram above, write a state transition
table for an SPI interface controller that transfers four bits at a time.
Include an idle state. In which states are SCLK and SS asserted?
Note that SCLK is the clock signal for the interface,

not for the interface’s logic circuits.
The slave SPI interface will also be implemented

with a state machine that synchronises to the trans-
mitter usingSS. Note that bothmaster and slavemust
be configured for the same bit order and for whether
MOSI/MISO and SS* change on the rising or falling
edge of SCLK.

Bi‑Directional Interfaces

We can further reduce the number of conductors re-
quired by using the same ones to transmit data in
both directions.
One way is by using tri-state outputs that are alter-

nately enabled so that only one side of the interface
is configured as an output at any time:

oe oe

transmit/receivetransmit/receive

this is the approach used by USB.
Another way is by using open-collector outputs so

that any device can pull the bus low in a “wired-OR”
configuration:

o.c. o.c.

Vdd

This interface allows multiple devices to share the
same wiring. However, the RC time constant on the
rising edge of the signal limits the possible data rates.

3

https://en.wikipedia.org/wiki/USB

	Parallel Interfaces
	Ready/Valid Interfaces
	Serial Interfaces
	Example: SPI

	Bi-Directional Interfaces

