
ELEX 2117 : Digital Techniques 2
2023 Fall Term

More Verilog

This lecture describes the relationship between numbers, logic levels and truth values. It also describes Verilog modules and
parameters.
After this lecture you should be able to: convert between high/low logic levels and true/false truth values for active-high and
active-low interfaces, declare modules with parameters and ports, and instantiate modules using positional, named and
wildcard parameters and signals.

Numbers, Truth Values and Logic Levels

Numbers are used for counting, logic levels are volt-
ages, and truth values can be true or false. These are
different, but related.
0 and 1 almost always mean false and true respec-

tively. But there are two common conventions for
logic levels and truth values. Active-high signals are
true when they are high and active-low signals are
true when they are low.
Active-low signals can be denoted by:

• a bar over the signal name (reset)

• an asterisk after the signal name (RESET*)

• a suffix of N (or n) after the signal name
(reset_n)

Verilog uses the usual meaning of 0 and 1 as truth
values in expressions. But for inputs and outputs it al-
ways uses 0 and 1 for low and high respectively. Thus
the truth value of 0 or 1 in Verilog depends on the
context – when used for I/O a 0 could mean either
true or false.
The following table summarizes the correspon-

dence between active-high and active-low signals,
truth values, logic levels and the values used in Ver-
ilog:

signal
name

logic
level

truth
value

Verilog
expres‑
sion

Verilog
I/O

s L T 1 0

s H F 0 1

s L F 0 0

s H T 1 1

Exercise1: Is a signal namedoverloadactive‑highor active‑low? Is
there anoverload if this signal is high? What if the signalwasnamed
overload?
Exercise 2: Come up with active‑high and an active‑low names for
a signal that is at 3 V when a door is open and 0 V when the door is
closed.
In addition to the two ways to represent truth val-

ues with voltages (active-high and active-low) there
are also two ways to represent binary digits (“bits”)
with voltages. A high voltage may represent either a
0 or a 1. Signals where a 1 is represented by a low
voltage typically, but not always, use active-low no-
tation.
Exercise 3: IfD is aword andD[0] is low, is theword an even or odd
number?

Modules

Simple things are easier to design and test than com-
plex ones. Thus it’s good practice to divide designs
into smaller parts1. These can often be re-used.
Many designs incorporate complex parts designed

by others (e.g. processors, memories and interfaces),
called design IP (“Intellectual Property”).
In Verilog each part is a module. Modules describe

logic that can be “instantiated” (duplicated and in-
serted into) another module:

instantiating module

instantiated module

signal
port

name:id

1How small? A good rule of thumb is to make sure each part
can be described on a single page.

lec5.tex 1 2023-10-11 08:55



clock

bits:b2

clock

d[7..0]

q[7..0]

bits:b0

clock

d[7..0]

q[7..0]

bits:b1

clock

d[7..0]

q[7..0]

newest[7..0]

oldest[7..0]

Figure 1: Shift Register Synthesis

The module’s interfaces are defined by a header
describing ports and parameters. Ports are in, out
or inout (bidirectional) signals while parameters are
values that can customize each instance of a module.
The module’s body contains additional signal decla-
rations and parallel (concurrently executing) state-
ments between module and endmodule. These de-
fine the structure or behaviour of the module.
Here’s an example of a module named bits that

defines an nb-bit register:
module bits
#(parameter nb=1)
(
input logic [nb-1:0] d,
output logic [nb-1:0] q,
input logic clock
) ;

always_ff @(posedge clock) q <= d ;

endmodule

The parameter nb has a default value of 1 which
is used if a value is not specified when this module is
instantiated. There are two input ports (named d and
clock) and one output port (named q).
Amodule instantiation starts with the name of the

module followed by parameter values (if any), an in-
stance name (to identify individual instances of the
same module), and a description of how to connect
signals in the instantiating module to the ports in the
instantiated module. For example:
bits #(4) b0 (a,b,c) ;

Would instantiate a bits module with one parame-
ter of value 4, an instance name b0 and connect the
signals a, b and c in the instantiating module to the
corresponding ports in an instance of the bitsmod-
ule (d, q and clock respectively).
Exercise 4: Draw a diagram for this instantiation of the bitsmod‑
ule. Label the module, instance, signal and port names as in the

diagram above.
An 8-bit, 3-stage shift register could be built using

three bitsmodules:
sr3bytes

newest oldest
bits:b0

d q

clock

d q

clock

d q

clock

clock

a b
bits:b1 bits:b2

module sr3bytes
(
input logic [7:0] newest,
output logic [7:0] oldest,
input logic clock
) ;

localparam nbits = 8 ;

logic [nbits-1:0] a, b ;

// matching by order
bits #(nbits) b0 (newest,a,clock);

// matching by name (order does not matter)
bits #(.nb(nbits)) b1 (.q(b),.clock,.d(a));

// wildcards for names that match
bits #(.nb(nbits)) b2 (.d(b),.q(oldest),.*);

endmodule

Exercise5: Identify themodule instantiation statements in thecode
above. For each one, what is the instantiated module’s name? The
instance name?
When one module is instantiated in another, a sig-

nal can be connected to module port by:

• port order (signal),

• port name and explicit signal name
(.port(signal)),

• port name only – connecting to the matching
signal name (.port),

2



• a wildcard that matches all remainingmatching
port and signal names (.*).

The signal name can be an expressions (e.g.
word[15:8]) instead of a signal. Matching of values
to parameters can be done by order (value) or
explicitly, .parameter(value).
The synthesis result, shown above, is as expected.

3


	Numbers, Truth Values and Logic Levels
	Modules 

