
ELEX 2117 : Digital Techniques 2
2023 Fall Term

Applications of State Machines

This lecture describes some applications of state machines.
After this lecture you should be able to implement the following: shift register, edge detector, sequence detector,

Shift Registers

A “shift register” is a register whose next state is the
concatenation of an input bit and the shifted output:

D Q

clock

q{in,q>>1}
N

in

N

Exercise 1: The example above is an N‑bit shift register that shifts
the bits right. Draw a block diagram andwrite the Verilog for a 6‑bit
shift register that shifts left.

in 1 0 1 1 0 0

 Q 0

D

clock

time

Exercise 2: Fill in the diagram above for a 4‑bit (𝑁 = 4) right‑shift
shift register. Assume the initial value is zero. Which bit is the oldest
(first) value in the D waveform? Which bit of the shift register holds
the oldest value?
A shift register makes previous inputs available in

parallel. This is useful for detecting sequences in an
input.
Exercise 3: Draw a block diagram and write the Verilog for a cir‑
cuit that sets an output named detect high when the sequence of
values 1, 1, 0, 1 has appeared on an input named in on successive
rising edges of the clock.

Edge Detector

An edge detector is a simple sequence detector. It de-
tects the change of an input between clock edges. The
state consist of the value of the input at the two most
recent clock edges.
The example belowuses a two-bit shift register that

shifts left with new bits inserted on the right. In this
case the oldest bit is on the left. For example, 10

means the two most recent inputs were 1 followed
by 0.

00

01

11

10

1 0

1

0

1

in=0

Exercise 4: For which states would a fell output be asserted? A
roseoutput? Drawtheschematicandwrite theVerilog for this state
machine. Assume an input in and a 2‑bit register bits that holds
the twomost recent input values.
Exercise 5: Can you design an edge detector that uses only one bit?
Is this a Mealy or a Moore state machine?

Interacting State Machines

Circuits often contain multiple state machines. The
state, or output, of one state machine can be an input
to another.
An example is the traffic light controller exam-

ple below. One register represents which lights are
turned on. Another register is the number of seconds
remaining before the lights change.

Traffic Light Controller

This is a controller for a traffic light at an intersection:

R

Y

G

R

Y GR

It combines two state machines: one to sequence the
traffic lights (using a register named lights) and
one as a timer (using a register named count). The

lec4.tex 1 2023-10-17 20:50

lights states are encoded as 6-bit values with the
on/off values of the (Red, Green, Yellow) lights in
each direction:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

6’b100_001 6’b100_010 6’b001_100 6’b010_100

Delays are implemented by decrementing count on
each edge of a 1 Hz clock. When count reaches zero
the lights register is loadedwith the next lights state
and the counter register is loaded with the duration
of this next state.
The state transition diagram for the light state ma-
chine is:

rg

gr

ryyr

count==0

count==0count==0

count==0

reset

Exercise 6: Write the state transition table for the statemachine for
the lights output.
The state transition table for the timer is:

count reset lights next count
x 1 x 0

count ≠ 0 0 x count − 1
0 0 rg, gr 4
0 0 ry, yr 29

A Verilog module implementing these two state
machines is:
// traffic light controller

module ex68
(output logic [5:0] lights,
input logic reset, clk) ;

logic [1:0] state ; // state register
logic [4:0] count ; // delay counter

// state-to-output lookup table
logic [0:3][5:0] lights_on =

'{ 6'b100_001, 6'b100_010,
6'b001_100, 6'b010_100 } ;

// next state
always @(posedge clk) state

<= reset ? 2'b00 :
count ? state :
state == 2'b11 ? 2'b00 : state + 1'b1 ;

// state durations
always @(posedge clk) count

<= reset ? 29 :
count ? count-1 :
state == 2'b00 || state == 2'b10 ? 4 : 29 ;

// set output based on state
assign lights = lights_on[state] ;

endmodule

The simulation results are shown in Figure 1.

Switch Debouncer

Mechanical switches “bounce” when they switch:

A switch debouncer eliminates these undesired tran-
sitions.
The debouncer shown below also uses two state

machines: a timer to delay changing the output until
the input has been stable for𝑁 clock cycles and a one-
bit statemachine to hold the current output value un-
til the timer expires. The timer, described with a state
transition table, uses a register namedcount. The de-
bouncer, described with a block diagram, uses a reg-
ister named out and an input named in.

count in == out next
count

x 1 𝑁 − 1
0 x 𝑁 − 1
𝑛 0 𝑛 − 1

D Q out
0

1

clock

in

count != 0

2

0 10 sec 20 sec 30 sec 40 sec 50 sec 60 sec 70 sec 80 sec

+ 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 +
+ 100001 100010 001100 010100 100001

+ 00 01 10 11 00

clk
count[4:0]
lights[5:0]
reset
state[1:0]

Figure 1: Simulation of traffic light controller.

Exercise 7: Write always_ff statements that implement these
state machines.

Sequence Detector

A sequence detector state machine can detect arbi-
trary sequences. In the following example, a 4-digit
combination lock, the state is the most recent four
input digits. Combinational logic asserts an unlock
output when the most recent four inputs match the
passcode (1,2,3,4 in this example).
// digit-sequence detector

module ex24 (output logic unlock,
input logic [3:0] digit,
input logic clk) ;

logic [0:3][3:0] digits ;

// next-state logic

always_ff @(posedge clk) digits
<= { digits[1:3], digit } ;

// sequence detector output

assign unlock
= digits == { 4'd1, 4'd2, 4'd3, 4'd4 } ?
'1 : '0 ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

x 5 1 2 3 4 2
xxxx xxx5 xx51 x512 5123 1234 2342

clk
digit[3:0]
digits[15:0]
unlock

Exercise 8: How could youmodify the code so that digits is only
updated when an enable input is asserted?

Exercise 9: Howmany states can this state machine have?

A simpler implementation would count the num-
ber of digits that had been entered in the correct or-
der.
Exercise 10: Draw the state transition diagram for this simpler im‑
plementation. How many states are there? Write the Verilog using
a 3‑bit count state variable.

“Hidden” State

It is not always possible to determine the state from
the output. This happens when two or more states
have the same output.
A common example of such state machines are

those used to detect sequences of values. The state
machinemust remember previous inputs but the out-
put does not change until the desired sequence has
appearred on the inputs.

3

	Shift Registers
	Edge Detector
	Interacting State Machines
	Traffic Light Controller
	Switch Debouncer

	Sequence Detector
	``Hidden'' State

