
ELEX 2117 : Digital Techniques 2
2023 Fall Term

State Machines

This lecture defines state machines and describes how to document them and how to implement them using Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, write a synthesizable Verilog description of it and convert between these three
descriptions.

Introduction

Registers

We can connectN flip-flops to the same clock to form
anN-bit register. The common clock loads every flip-
flop at the same time:

D Q

D Q

D Q

clock

D0

D1

DN-1

Q0

Q1

QN-1

D Q

clock

D Q
N N

The Verilog always_ff statement creates a regis-
ter.

State

The state of a register is its value. A state machine is
a description of how the state changes.
The schematic of a state machine is a register

whose next value is selected by a combination of the
current state and, optionally, input signals:

inputs

D Q outputs

clock

Mealy state machine only

 next−state
combinational
 logic

state

 output
combinational
 logic

State transitions, which are changes in the register
value, only happen at the rising edge of the clock. The

state register is always loaded on each rising edge of
the clock, but there is no change of state if it’s loaded
with its current value.
The output of a state machine can be its state. Al-

ternatively, a logic function such as lookup table can
generate the desired output for each state.
The above describes a Moore state machine. A

Mealy state machine is one where the output is a
function of the current state and the inputs.

State Machine Descriptions

For example, consider a state machine with two bits
of state that sequences through the values 00, 01, 10,
11 and back to 00. The output should be 0 in states
00 and 01 and 1 in states 10 and 11.
The following truth tables define this state ma-

chine’s next-state and output combinational logic
blocks:

state next
state

00 01
01 10
10 11
11 00

state output
00 0
01 0
10 1
11 1

State Transition Table

A state transition table is a truth-table description
of the next-state logic. It has columns for the cur-
rent state, the input value(s), and the corresponding
next state. Some useful conventions are: (1) x can
be used for “don’t care” state or input values; (2) the
firstmatching state/input row is chosen; (3) if there is
no match then there is no change of state; (4) expres-
sions can be used to define the next state as a function
of the current state and the input.

lec2.tex 1 2023-10-04 10:53

For example, if we added a reset input that set the
state to 00 when it was asserted (1), we could write
the state transition table for this resetable counter as:

state reset next
state

xx 1 00
11 0 00
𝑛 0 𝑛 + 1

State Transition Diagram

A state machine can also be described by a state tran-
sition diagram drawn using the following conven-
tions: (1) each state is represented by a circle labelled
with the state value (or name); (2) each state shows
the output for that state (unless the state is the out-
put); (3) arrows show possible transitions between
states; (4) transitions happen when the expression
is non-zero (true); (5) unlabelled transitions happen
unconditionally; (6) transitions with no origin come
from all states; (7) conditions that don’t cause a state
change are not shown1; (8) only one transition out of
a state may be true (the conditions must be mutually
exclusive).
The following is a state transition diagram for the

state machine above:

reset

00 01 10 11

0 0 1 1

Exercise 1: Modify the diagram so the state machine counts to 11
and stops. Add a down input that cause the values to count down.

State Machines in Verilog

A state machine can be written in Verilog using one
conditional operator for each transition in the dia-
gramor table. The condition is true if the state and in-
put value(s) match the values for that transition. The
true value is the next state for that transition. The
false value is the next conditional operator or, if no
transition matches, the current state.
The Verilog for the example above would be:

1Some authors do not allow this.

// 2-bit clock divider with reset

module ex67
(output logic [1:0] count,
output logic out,
input logic reset, clk) ;

always_ff @(posedge clk) count
<= reset ? 2'b00 :

count == 2'b11 ? 2'b00 :
count + 1'b1 ;

assign out = count == 2'b10 || count == 2'b11 ;

endmodule

0 3 ps 6 ps 9 ps 12 ps

xx 00 01 10 11 00 01 10

clk=0
count[1:0]=01
out=0
reset=0

Counters

A counter is a common state machine. Typical in-
puts include those to restart the sequence (typically
called reset), to pause or continue the sequence (hold
or enable), or change the order of the values gener-
ated (e.g. up/down).
Exercise 2: Show the state transition diagram and table for a 2‑
bit counter with reset, enable, and down inputs. Reset should have
priority. Write the Verilog.

Timers and Clock Dividers

It takes𝑁 clock periods for a counter to count down2
from𝑁 −1 to 0. If the clock period is 𝑇 seconds then
the time taken is𝑁𝑇 seconds. A circuit can thus cre-
ate a delay of𝑁𝑇 seconds by counting𝑁 clock cycles3
Exercise3:Whatvalueof𝑁would result ina20msdelay if theclock
frequency is 50MHz? Howmanybits are needed for this timer’s reg‑
ister?
If the counter is reset to 𝑁 − 1 when it reaches

0 then the count values will be periodic with a pe-
riod 𝑁𝑇. If some event happens each time the count
reaches a specific value (e.g. 0) then this event hap-
pens with period 𝑁𝑇 (and thus a frequency 1/𝑁𝑇).
Exercise 4: Assume the timer above is reset to𝑁 − 1 each time
it reaches 0. For how long is the register value 0? What are the pe‑
riod and frequency of a signal that is inverted each time the count
reaches 0?

2Timers traditionally count down from𝑁−1 to 0 rather than
up from 0 to 𝑁 − 1 because it’s simple to determine when the
count reaches 0: adding−1 does not cause a carry.

3The time includes clock cycles during which the counter has
values𝑁 − 1 through 0 inclusive.

2

State Encodings

There are three ways to represent (“encode”) states:

Binary States are encoded as binary numbers. This
requires the fewest number of flip-flops. It is
used for state machines with many states such
as counters. In the above example the binary en-
coding of the states would be 00, 01, 10 and 11.

One-Hot Each bit of the state register represents a
different state. This is often used when there are
only a few states as it can simplify the logic re-
quired to compute the output for a given state or
to compute the next state. In the above example
a one-hot encoding might be 1000, 0100, 0010
and 0001.

Output Each state is encoded as the output for that
state. This eliminates the need for any logic to
determine the output as a function of the state.
However, this is only possible if the output is dif-
ferent for each state. The above example could
not use an output state encoding because the
output is 0 for states 00 and 01 and the output is
1 for states 10 and 11.

Exercise 5: Howmany bits need to be considered to detect a spe‑
cific state when a binary encoding is used? How many need to be
considered if a one‑hot encoding is used?
Exercise 6: If we used 8‑bits of state information, howmany states
could be represented? What if we used 8 bits of state but used a
“one‑hot” encoding?

3

	Introduction
	Registers
	State

	State Machine Descriptions
	State Transition Table
	State Transition Diagram
	State Machines in Verilog

	Counters
	Timers and Clock Dividers

	State Encodings

