Introduction to Digital Design with Verilog HDL
Exercise 1: What changes would result in a 3-input OR gate?

$$
\begin{aligned}
& \text { module or 3 }(\\
& \text { input logic } a, b, c, \\
& \text { output logic } y) ; \\
& \text { assign } y=a|b| c ; \\
& \text { endmodule }
\end{aligned}
$$

Exercise 2: What schematic would you expect if the statement was assign $y=(a \wedge b) \mid c ; ?$

Exercise 3: If the signal \mathbf{i} is declared as logic [2:0] \mathbf{i}; what is the 'width' of i ?

If i has the value 6 (decimal), what is the value of $i[2]$?

$$
i[2] \equiv 1
$$

$[3: 0]$
$[4: 1]$
Of $i[0]$? $i[0] \equiv 0$

Exercise 4: What are the widths and values, in decimal, of the following:

Exercise 5: What are the values of the following expressions:
\downarrow
! 4'b010? $\longrightarrow 0$
~4'b010? $\longrightarrow 1101$
14'b0001? $\quad \mid 44^{\prime} b 0001=$
^4'b1001 $\left.\equiv\right|^{\wedge}$ N $\left.^{\wedge} 0^{\wedge}\right)=0$
\&4'b1111? $\equiv|\&| \&|\&| \rightarrow 1$
\&4'b1110? $\equiv|\&| \& \mid \& O \rightarrow 0$

Exercise 6: Use slicing and concatenation to compute the byteswapped value of an array n declared as logic [15:0] n .

$$
\begin{aligned}
& {[a: b]} \\
& \{,\}
\end{aligned}
$$

$$
\begin{aligned}
& n[15: 8] \\
& n[7: 0]
\end{aligned}\{n[7: 0], n[15: 8]\}
$$

Exercise 7: If n has the value 16 ' h 1234 , what is the value and width of:

$$
16^{\prime} h 1234 \equiv 16^{\prime} 6 \underbrace{1111}_{20010010}
$$

$8^{\prime} h 34$ 8'hl2 $4^{\prime} h f$
\{n[7:0],n[15:8],4'b1111\}?
$20^{\prime} h 3412 f$

Exercise 8: Use concatenation to shift n left by two bits.
(4)

$$
\left\{n[13: 0], 2^{\prime} 610\right\}
$$

Exercise 9: Use concatenation to assign the high-order byte of \mathbf{n} to \mathbf{a} and the low-order byte to \mathbf{b}.

$$
\left[\begin{array}{l}
\operatorname{logic}[7: 0]^{\ell} a, b ; \\
\operatorname{logic}[15: 07 n
\end{array}\right.
$$

$$
\left\{a^{a} b\right.
$$

assign $\quad \begin{aligned} & a=n[15: 8] ; \\ & b=n[7: 0] ;\end{aligned} \quad a \operatorname{sign}\{a, b\}=n ;$

$$
a \operatorname{sign} \quad b=n[7: 0] ; \quad(\operatorname{OR}\{n[15: 8], n[7: 0]\})
$$

Exercise 10: What are the width and value of $\{\underbrace{\left\langle 3\left\{2^{\prime} \mathrm{b} 10\right\}\right.}\}, 2^{\prime} \mathrm{b} 11\}^{\downarrow}\}$

$$
\begin{gathered}
\left\{3\left\{2^{\prime} b 10\right\}\right\}=6^{\prime} b 101010 \\
\left\{\left\{3\left\{2^{\prime} b 10\right\}\right\}, 2^{\prime} b 11\right\}=8^{\prime} b 10101011
\end{gathered}
$$

Exercise 11: An array declared as logic [15:0] n; and has the value $16^{\prime} \mathrm{h} 1234$. What are the values and widths of the following expressions?
16^{\prime} h 1234 $16 \% 0001001000110100$

$$
\begin{aligned}
& \frac{n[15: 13]}{3^{\prime} b 000} \frac{16^{\prime} b 111111111111111}{11101101} \\
& !n \rightarrow 1^{\prime} b 0 \\
& \stackrel{O}{\rightarrow} \rightarrow F^{-}
\end{aligned}
$$

$\underbrace{4.66100}$
$\underset{\uparrow}{\underset{\uparrow}{[[3: 0]})} \sim 4^{\prime}$ b0100 $\rightarrow 4^{\prime}$ bIol

$$
\begin{aligned}
& 16^{\prime} h \underline{\underline{2}} 34 \gg 4 \rightarrow 16^{\prime} h 123 \\
& \underset{n \rightarrow 4}{ } \rightarrow \quad \rightarrow 16 \text { or } 16^{\prime} \mathrm{h} 0123 \\
& \underset{\xi}{n+1 ' b 1} \rightarrow 16^{\prime} h 1235 \\
& \frac{n[7: 0]}{\downarrow} \uparrow \frac{n[3: 0]}{\downarrow} \\
& \text { 8'h } 34-\text { 4'h }^{\prime} \\
& 8^{\prime} h 30
\end{aligned}
$$

Exercise 12: What are the width and value of the expression: 3 ?
16'd10: 8'h20?

$$
16^{\prime} \mathrm{d} 10 \equiv 16^{\prime} \mathrm{ha}
$$

If x has the value 0 , what is the value of the expression: $\quad \underset{\sim}{x}$?
1'b1: 1'b0?

$$
1^{\prime} b \phi
$$

If x has the value -1?

$$
\begin{gathered}
-1 ?|b|: l^{\prime} b 0 \\
l^{\prime} b \mid
\end{gathered}
$$

Exercise 13: Draw the schematics corresponding to:

$$
y=a \quad ? \mathrm{~s} 1: \mathrm{b} ? \mathrm{~s} 2: \mathrm{c} ? \mathrm{~s} 3: \mathrm{s} 4
$$

Exercise 14:

$$
\text { assign y = a + } 1 \text {; }
$$

Some software warns about truncation. How could you re-write the assign statement to avoid such a warning?

$$
\text { assign } y=a+1 ' b 1 \text {; }
$$

Exercise 15: Write an always_ff statement that toggles (inverts) its output on each rising edge of the clock.

$$
\begin{gathered}
\text { always_ff } Q(p \text { posedge ck) } \\
q<=\sim q ;
\end{gathered}
$$

