Introduction to Digital Design with Verilog HDL

Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was assign y = (a ^ b) | c ;?

Exercise 3: If the signal **i** is declared as **logic** [2:0] **i**;, what is the 'width' of **i**?

If i has the value 6 (decimal), what is the value of i[2]?

if
$$[2] = [3:6]$$

Of $i[0]$?

$$[3:6]$$

$$[4:1]$$

Exercise 4: What are the widths and values, in decimal, of the following:

Exercise 5: What are the values of the following expressions:

Exercise 6: Use slicing and concatenation to compute the byteswapped value of an array n declared as logic [15:0] n.

$$n = \begin{cases} \frac{16}{8} \\ \frac{1}{8} \\ \frac{1}{8}$$

Exercise 7: If **n** has the value **16** ' **h1234**, what is the value and width of:

$$16'h1234 = 16'b00010010010001000$$
 $8'k948'h124'hf$
 $\{n[7:0], n[15:8], 4'b1111\}$?

Exercise 8: Use concatenation to shift **n** left by two bits.

Exercise 9: Use concatenation to assign the high-order byte of $\bf n$ to $\bf a$ and the low-order byte to $\bf b$.

assign
$$a = h[16:8]$$
; = assign $\{a,b\} = n$; assign $b = n[7:0]$; $\{n[18:8], n[7:0]\}$

Exercise 10: What are the width and value of $\{3\{2'b10\}\}, 2'b11\}$? $\{3\{2'b10\}\} = 6'b \{0|0|0$ $\{3\{2'b10\}\}, 2'b11\} = 5'b \{0|0|0|1\}$

Exercise 11: An array declared as logic [15:0] n; and has the value 16'h1234. What are the values and widths of the following

$$\frac{n[7:0]}{\downarrow} + \frac{n[3:0]}{\downarrow}$$

$$9'h 34 - 4'h 4$$

If x has the value 0, what is the value of the expression:
$$x = \frac{1 + b1}{1 + b0}$$
?

Exercise 13: Draw the schematics corresponding to:

$$y = a$$
? $s1$: b ? $s2$: c ? $s3$: $s4$;

Exercise 14:

assign
$$y = a + 1$$
;

Some software warns about truncation. How could you re-write the **assign** statement to avoid such a warning?

assign
$$y = a + 1'b1 ;$$

Exercise 15: Write an always_ff statement that toggles (inverts) its output on each rising edge of the clock.

