Solutions to Quiz 3

There were two versions of the first three questions. The values and the answers for the two versions are given below.

Question 1

A flip-flop has an (asynchronous) reset input. The data sheet specifies a minimum time from this input being asserted (or de-asserted) to the output going to zero (or the next rising edge on the clock input). Is this timing specification a guaranteed response or a requirement? How do you know?

Answers

There were two different answers:

- A timing specifications measured to a transition for on an output is a guaranteed response.
- A timing specifications measured to a transition on an input, such as the clock, is a requirement.

Question 2

A circuit operating at a clock rate of 50 (or 25) MHz uses registers with a 5 ns setup time and a 1 ns clockto-output delay. What is the maximum allowable propagation delay through any combinational logic path?

Answers

The equation:

$$t_{SU}$$
 (avail) = $T_{clock} - t_{CO}$ (max) - t_{PD} (max)

can be solved for t_{PD} :

$$t_{\text{PD}}(\max) = T_{\text{clock}} - t_{\text{CO}}(\max) - t_{\text{SU}}(\operatorname{avail})$$
.

For this question $T_{\text{clock}} = \frac{1}{50 \text{ MHz}} = 20 \text{ ns}$ (or 40 ns), t_{CO} is given as 1 ns and t_{SU} as 5 ns. Thus t_{PD} (max) = $20-1-5 = \boxed{14 \text{ ns}}$. (or t_{PD} (max) = $40-1-5 = \boxed{34 \text{ ns}}$).

Question 3

A prototype of a circuit consumes 1 (or 2) W when operating with a 5 V supply at a frequency of 5 MHz. What clock rate would reduce the power consumption to 30 mW at a supply voltage of 1.5 V?

Answers

Solving the equation:

$$\frac{P_2}{P_1} = \frac{f_2}{f_1} \cdot \left(\frac{V_2}{V_1}\right)^2$$

for f_2 :

$$f_2 = \frac{f_1P_2}{P_1} \left(\frac{V_1}{V_2}\right)^2$$

and setting $f_1 = 5 \times 10^6$, $P_1 = 1$ (or 2), $P_2 = 30 \times 10^{-3}$, $V_1 = 5$ and $V_2 = 1.5$:

$$f_2 = \frac{5 \times 10^6 30 \times 10^{-3}}{1} \left(\frac{5}{1.5}\right)^2 = \boxed{1.66 \,\mathrm{MHz}}$$

Question 4

Would an open-collector output with a 10 k Ω pullup resistor operate properly at a frequency of 10 MHz if the parasitic capacitances connected to this output totalled 20 pF? Why or why not? *Hint: What is the time constant?*

Answers

The rise-time time constant is given by $RC = 10 \text{ k}\Omega \times 20 \text{ pF} = 200 \text{ ns}$ while the clock period is 1/10 MHz = 100 ns. Thus the signal will need 200 ns to switch between a zero output voltage and $\approx 63\%$ of the high output voltage. This delay exceeds the clock period and such a circuit is unlikely to operate properly.