Solutions to Quiz 1

There were two versions of each question. The values and the answers for the two versions are given below.

Question 1

Write a Verilog module named foo with a 3 (or 4)bit input named x (or a) and 1 (or 2)-bit output named y. The module should be empty except for an endmodule.

Answers

module foo (input logic [2:0] x,
output logic y $)$
endmodule

```
module foo2 ( input logic [3:0] a,
endmodule
```


Question 2

Write a Verilog numeric literal that has a value of 33 (decimal), a length of 12 (or 10) bits, and whose value is specified using hexadecimal (or binary) base.

Answers

12'h21 or 10'b10_0001.

expression	$\begin{aligned} & \text { 12'hb5, } \\ & \text { 4'b1001 } \end{aligned}$	$\begin{aligned} & 12 \text { 'h5b, } \\ & \text { 4'b0110 } \end{aligned}$
$x \gg 4$	12 ' hb	12 'h5
x[7:4]	$4{ }^{\prime} \mathrm{hb}$	4' h5
$\{\mathrm{x}, \mathrm{y}\}$	16 ' hb59	16 ' h5b6
x \& y	12 'h1	12'h2
$x-y$	12 ' hac	12 ' h55
	4' h9	4' h6

Question 4

Write one Verilog statement that implements the block diagram on the right. The buses have been declared as logic arrays.

Answers

always_ff @(posedge master) $\mathbf{y}<=\mathbf{x}+1$ 'b1 ;

Question 3

Fill in the table on the right with the value of the each expression as a Verilog numeric literal including the correct length and value in hexadecimal base assuming the following declarations:

```
logic [11:0] x;
logic [3:0] y;
```

and that x has the value 12 ' h0b5 (or 12 ' h05b) and that y has the value 4'b1001 (or 4' b0110).
assign $\mathbf{y}=\mathbf{u p} \boldsymbol{?} \mathbf{x}+1$ 'b1 : $\mathbf{x}-1$ 'b1 ;

