ELEX 2117 : Digital Techniques 2 2022 Fall Term

Solutions to Quiz 1

There were two versions of each question. The values and the answers for the two versions are given below.

Question 1

Write a Verilog module named **foo** with a 3 (or 4)bit input named x (or a) and 1 (or 2)-bit output named y. The module should be empty except for an endmodule.

Answers

expression	12'hb5, 4'b1001	12'h5b, 4'b0110
x>>4	12 ' hb	12'h5
x[7:4]	4 ' hb	4 ' h5
{x,y}	16'hb59	16'h5b6
х & у	12'h1	12 ' h2
x - y	12'hac	12'h55
x[0] ? y : ~y	4'h9	4'h6

Question 4

Write *one* Verilog statement that implements the block diagram on the right. The buses have been declared as **logic** arrays.

Question 2

Write a Verilog numeric literal that has a value of 33 (decimal), a length of 12 (or 10) bits, and whose value is specified using hexadecimal (or binary) base.

Answers

12'h21 or 10'b10_0001.

Question 3

Fill in the table on the right with the value of the each expression as a Verilog numeric literal including the correct length and value in hexadecimal base assuming the following declarations:

logic [11:0] x; logic [3:0] y;

and that x has the value 12'h0b5 (or 12'h05b) and that y has the value 4'b1001 (or 4'b0110).

always_ff @(posedge master) y <= x + 1'b1 ;</pre>

assign y = up ? x + 1'b1 : x - 1'b1 ;

1