
ELEX 2117 : Digital Techniques 2
2022 Fall Term

Solutions to Midterm 2

Question 1

A sequence detector detects input sequences consist-
ing of a 1, followed by any number of zeros (including
none), followed by a 1.
There are two inputs named reset and in. There

is one output named out. When reset is asserted
the output is set to 0. When the desired sequence is
detected, the output is set to 1. The output remains
at 1 until reset is asserted again.
The state transition diagram and state transition

table are shown at right below. The state does not
change for other input conditions. A second table
shows the value of out for each state. Fill in the
missing code in the following Verilog module so as to
implement the sequence detector state machine de-
scribed above.

A

100

B

001

A

B

010

A: in == 1 && reset == 0
B: reset == 1

state reset in next state
X 1 X 100
100 0 1 010
010 0 1 001

state out
100 0
010 0
001 1

module detector
(input logic reset, clk, in,
output logic out) ;

logic [2:0] state ;
...
endmodule

Solution

Two possible detectormodules and a testbench are
given below. The second solution takes advantage of
the one-hot encoding of the states.
// simple solution

module detector
(input logic reset, clk, in,
output logic out) ;

logic [2:0] state ;

always_ff @(posedge clk)
state <= reset == '1 ? 3'b100 :

state == 3'b100 && in == '1 ? 3'b010 :
state == 3'b010 && in == '1 ? 3'b001 :
state ;

assign out = state == 3'b001 ? '1 : '0 ;

endmodule

// taking advantage of the one−hot encoding

module detector_
(input logic reset, clk, in,
output logic out) ;

logic [2:0] state ;

always_ff @(posedge clk)
state <= reset ? 3'b100 :

state[2] && in ? 3'b010 :
state[1] && in ? 3'b001 :
state ;

assign out = state[0] ;

endmodule

module detector_tb ;

logic reset, clk, in ;
logic out ;

detector d0 (.*) ;

logic [0:15] tv[2]='{ 16'b1000_0010_0000_0000,
16'b0001_1000_0100_1000 } ;

initial begin
$dumpfile("detector.vcd") ;
$dumpvars ;

{reset, clk, in} = 3'b100 ;

for (int i=0 ; i<16 ; i++) begin
#1 clk = '0 ;
{reset,in}={tv[0][i],tv[1][i]} ;
#1 clk = '1 ;

end
end

endmodule

midterm2sol.tex 1 2022-11-05 12:02

0 7 ps 14 ps 21 ps 28 ps

xxx 100 010 001 100 010 001

reset
in
clk
out
state[2:0]

Figure 1: Simulation results for Question 1

The simulation waveforms showing a reset, detec-
tion of the sequence 11, a second reset, and detection
of the sequence 1001 is shown in Figure 1:

Question 2

(a) Should an input named RESET (or RESET) be set
high or low to cause a reset?

(b) Should an output named INTERRUPT (or
INTERRUPT) be set high or low to cause an
interrupt?

Solution

Active-high inputs or outputs such as RESET or
INTERRUPT are true (asserted) when they are
high. Thus to cause a reset or interrupt RESET or
INTERRUPT should be high .
Active-low inputs or outputs such as RESET

or INTERRUPT are true (asserted) when they are
low. Thus to cause a reset or interrupt RESET or
INTERRUPT should be low .

Question 3

The following Verilog shows the declaration of a
module named quad. The diagram shows how two of
these are connected within amodule named angles:
module quad
(input logic [7:0] s,
output logic [7:0] q) ;
// ...

endmodule

ang
s q s q

r90

r180

quad:q0 quad:q1

8 8

8

angles

The numbers above the lines show the signal (bus)
widths. The identifiers above the boxes show the
module and instance names. The identifiers below
the ports show the anglesmodule port names.
Write a SystemVerilogmodule named angles that

implements the diagram above. Declare any signals
required to implement the angles module. Do not
write the quad module. Follow the course coding
conventions

Solution

Concise and verbose versions of an anglemodule are
shown below. Note that the quad module does not
have parameters and specifying them would have no
effect.
module quad
(input logic [7:0] s,
output logic [7:0] q) ;
// ...

endmodule

// concise solution

module angle_
(input logic [7:0] ang,
output logic [7:0] r90, r180) ;

quad q0 (ang, r90) ;
quad q1 (r90, r180) ;

endmodule

// verbose solution

module angle
#(N=8)
(input logic [N-1:0] ang,
output logic [N-1:0] r90, r180) ;

logic [N-1:0] t ;

quad q0 (.s(ang), .q(t)) ;
quad q1 (.s(t), .q(r180)) ;

endmodule

2

Question 4

Fill in the following testbenchmodule with code that
does the following:

(a) sets the value of n to 0 in an initial block,

(b) terminates the simulation with $stop() if the
value of n is equal to 8'd255,

(c) adds 1 to n every 5 µs, and
(d) uses $display() to print the value of n every

20 µs.

module midterm_tb ;

logic [7:0] n ;
...
endmodule

Solution

Various solutions are possible. A midterm_tb mod-
ule meeting the above requirements and written us-
ing the Verilog language features described in the
lecture notes (wait, $stop, $display, always and
#delay) is shown below.
module midterm_tb ;

logic [7:0] n ;

initial begin
n = '0 ;
wait (n == 8'd255) ;
$stop() ;

end

always #5us n = n + 1 ;

always #20us $display(n) ;

endmodule

The start and end of the logged ($display) output
is:

run -all
3
7
11
...

243
247
251
** Note: $stop : midterm2sol-3.sv(12)
Time: 1275 us Iteration: 1 Instance: /midterm_tb
Break in Module midterm_tb at midterm2sol-3.sv line 1

Question 5

The following waveform shows the signals on an SPI
interface. What value was transmitted from the mas-
ter to the slave (or slave to the master) assuming the
bits were transferred most-significant-bit first? Give
you answer as a hexadecimal number. Show your
work.

Solution

SS*

SCLK

MOSI

MISO 1 1

1 1 1

1
1

1

0

0

0

0 0

0 0

0

Data is transferred on the rising edge of SCLK
while SS* is asserted (low). The values of the bits on
MOSI and MISO are shown in the diagram below.
From master to slave on MOSI the bits transferred

were: 8’b0110_1001 = 8’h69 .
From slave to master on MISO the bits transferred

were: 8’b1010_0101 = 8’ha5 .

3

	Question 1
	Solution

	Question 2
	Solution

	Question 3
	Solution

	Question 4
	Solution

	Question 5
	Solution

