TOP A00123456 TOP A00123456 TOP A00123456 TOP A00123456 TOP

ELEX 2117 : Digital Techniques 2 2022 Fall Term

MIDTERM EXAM 2 15:30 – 17:20 Friday, November 4, 2022 SW03-1710

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of seventeen (17) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work**.

This exam paper is for:

Sample Exam 1 A00123456

Each exam is equally difficult.

Answer your own exam.

Do not start until you are told to do so.

Name: _____

BCIT ID:	

Signature:

0

Question 1

A sequence detector detects input sequences consisting of a 1, followed by any number of zeros (including none), followed by a 1. There are two inputs named **reset** and **in**. There is one output named **out**. When **reset** is asserted the output is set to 0. When the desired sequence is detected, the output is set to 1. The output remains at 1 until **reset** is asserted again.

The state transition diagram and state transition table are shown at right. The state does not change for other input conditions. A second table shows the value of **out** for each state.

Fill in the missing code in the following Verilog module so as to implement the sequence detector state machine described above.

```
A 010

A 010

A 010

A 001

A: in == 1 && reset == 0

B: reset == 1
```

```
state reset in next state
```

Х	1	Х	100	
100	0	1	010	
010	0	1	001	

out	
0	
0	
1	
	0

module detector

(input logic reset, clk, in, output logic out) ;

logic [2:0] state ; endmodule

Question 2

2 marks

4 marks

- (a) Should an input named **RESET** be set high or low to cause a reset?
- (b) Should an output named **INTERRUPT** be set high or low to cause an interrupt?

Question 3

The following Verilog shows the declaration of a module named **quad**. The diagram shows how two of these are connected within a module named **angles**:

module quad	angles
<pre>(input logic [7:0] s, output logic [7:0] q) ; // endmodule</pre>	quad:q0 quad:q1 $r90$ 8 s q s q $r180$

The numbers above the lines show the signal (bus) widths. The identifiers above the boxes show the module and instance names. The identifiers below the ports show the **angles** module port names.

Write a System Verilog module named **angles** that implements the diagram above. Declare any signals required to implement the **angles** module. Do not write the **quad** module. Follow the course coding conventions

Question 4

Fill in the following testbench module with code that does the following:

- (a) sets the value of **n** to **0** in an **initial** block,
- (b) terminates the simulation with **\$stop()** if the value of **n** is equal to **8' d255**,
- (c) adds 1 to n every $5 \mu s$, and
- (d) uses **\$display()** to print the value of **n** every 20 μs.

module midterm_tb ;

```
logic [7:0] n ;
endmodule
```

Question 5

The following waveform shows the signals on an SPI interface. What value was transmitted from the slave to the master assuming the bits were transferred most-significant-bit first? Give you answer as a hexadecimal number. Show your work.

2 marks

4 marks

TOP A01234567 TOP A01234567 TOP A01234567 TOP A01234567 TOP

ELEX 2117 : Digital Techniques 2 2022 Fall Term

MIDTERM EXAM 2 15:30 – 17:20 Friday, November 4, 2022 SW03-1710

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of seventeen (17) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work**.

This exam paper is for:

Sample Exam 2 A01234567

Each exam is equally difficult. Answer your own exam. Do not start until you are told to do so.

Name: _____

BCIT ID:	

Signature:

Question 1

A sequence detector detects input sequences consisting of a 1, followed by any number of zeros (including none), followed by a 1. There are two inputs named **reset** and **in**. There is one output named **out**. When **reset** is asserted the output is set to 0. When the desired sequence is detected, the output is set to 1. The output remains at 1 until **reset** is asserted again.

The state transition diagram and state transition table are shown at right. The state does not change for other input conditions. A second table shows the value of **out** for each state.

Fill in the missing code in the following Verilog module so as to implement the sequence detector state machine described above.

```
A 010

A 010

B 010

A: in == 1 && reset == 0

B: reset == 1
```

state	reset	in	next state
Х	1	Х	100
100	0	1	010
010	0	1	001
	•	-	001

state	out
100	0
010	0
001	1

module detector

(input logic reset, clk, in, output logic out) ;

logic [2:0] state ; endmodule

Question 2

2 marks

4 marks

- (a) Should an input named **RESET** be set high or low to cause a reset?
- (b) Should an output named INTERRUPT be set high or low to cause an interrupt?

Question 3

The following Verilog shows the declaration of a module named **quad**. The diagram shows how two of these are connected within a module named **angles**:

module quad	angles
<pre>(input logic [7:0] s, output logic [7:0] q) ; // endmodule</pre>	quad:q0 quad:q1 $r90$ 8 s q s q $r180$

The numbers above the lines show the signal (bus) widths. The identifiers above the boxes show the module and instance names. The identifiers below the ports show the **angles** module port names.

Write a System Verilog module named **angles** that implements the diagram above. Declare any signals required to implement the **angles** module. Do not write the **quad** module. Follow the course coding conventions

Question 4

Fill in the following testbench module with code that does the following:

- (a) sets the value of **n** to **0** in an **initial** block,
- (b) terminates the simulation with **\$stop()** if the value of **n** is equal to **8' d255**,
- (c) adds 1 to n every $5 \mu s$, and
- (d) uses **\$display()** to print the value of **n** every 20 μs.

module midterm_tb ;

```
logic [7:0] n ;
endmodule
```

Question 5

The following waveform shows the signals on an SPI interface. What value was transmitted from the master to the slave assuming the bits were transferred most-significant-bit first? Give you answer as a hexadecimal number. Show your work.

