ELEX 2117 : Digital Techniques 2
2022 Fall Term

MIDTERM EXAM 2
15:30-17:20
Friday, November 4, 2022
SW03-1710

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of seventeen (17) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. Show your work.

This exam paper is for:
Sample Exam 1 А00123456

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Signature:

A sequence detector detects input sequences consisting of a 1 , followed by any number of zeros (including none), followed by a 1.
There are two inputs named reset and in. There is one output named out. When reset is asserted the output is set to 0 . When the desired sequence is detected, the output is set to 1 . The output remains at 1 until reset is asserted again.

The state transition diagram and state transition table are shown at right. The state does not change for other input conditions. A second table shows the value of out for each state.

Fill in the missing code in the following Verilog module so as to implement the sequence

A: in == $1 \& \&$ reset $==0$ B: reset $==1$

state	reset	in	next state
X	1	X	100
100	0	1	010
010	0	1	001

state	out
100	0

010 0
$001 \quad 1$ detector state machine described above.

```
module detector
    ( input logic reset, clk, in,
        output logic out ) ;
    logic [2:0] state ;
endmodule
```

(a) Should an input named RESET be set high or low to cause a reset?
(b) Should an output named INTERRUPT be set high or low to cause an interrupt?

The following Verilog shows the declaration of a module named quad. The diagram shows how two of these are connected within a module named angles:
module quad
(input logic [7:0] s, output logic [7:0] q) ;
// ...
endmodule
angles

The numbers above the lines show the signal (bus) widths. The identifiers above the boxes show the module and instance names. The identifiers below the ports show the angles module port names.

Write a System Verilog module named angles that implements the diagram above. Declare any signals required to implement the angles module. Do not write the quad module. Follow the course coding conventions

Question 4

Fill in the following testbench module with code that does the following:
(a) sets the value of \boldsymbol{n} to $\boldsymbol{0}$ in an initial block,
(b) terminates the simulation with $\$ \mathbf{s t o p}()$ if the value of n is equal to 8 ' d 255 ,
(c) adds 1 to n every $5 \mu \mathrm{~s}$, and
(d) uses \$display () to print the value of n every $20 \mu \mathrm{~s}$.
module midterm_tb ;
logic [7:0] n ;
endmodule

Question 5
The following waveform shows the signals on an SPI interface. What value was transmitted from the slave to the master assuming the bits were transferred most-significant-bit first? Give you answer as a hexadecimal number. Show your work.

MIDTERM EXAM 2

15:30-17:20
Friday, November 4, 2022
SW03-1710

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of seventeen (17) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. Show your work.

This exam paper is for:
Sample Exam 2 a01234567

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Signature: \qquad

A sequence detector detects input sequences consisting of a 1 , followed by any number of zeros (including none), followed by a 1.
There are two inputs named reset and in. There is one output named out. When reset is asserted the output is set to 0 . When the desired sequence is detected, the output is set to 1 . The output remains at 1 until reset is asserted again.

The state transition diagram and state transition table are shown at right. The state does not change for other input conditions. A second table shows the value of out for each state.

Fill in the missing code in the following Verilog module so as to implement the sequence

A: in == $1 \& \&$ reset $==0$ B: reset $==1$

state	reset	in	next state
X	1	X	100
100	0	1	010
010	0	1	001

state	out
100	0

010 0
001 1 detector state machine described above.

```
module detector
    ( input logic reset, clk, in,
        output logic out ) ;
    logic [2:0] state ;
endmodule
```

Question 2
(a) Should an input named $\overline{\text { RESET }}$ be set high or low to cause a reset?
(b) Should an output named INTERRUPT be set high or low to cause an interrupt?

Question 3

The following Verilog shows the declaration of a module named quad. The diagram shows how two of these are connected within a module named angles:
module quad
(input logic [7:0] s, output logic [7:0] q) ;
// ...
endmodule
angles

The numbers above the lines show the signal (bus) widths. The identifiers above the boxes show the module and instance names. The identifiers below the ports show the angles module port names.

Write a System Verilog module named angles that implements the diagram above. Declare any signals required to implement the angles module. Do not write the quad module. Follow the course coding conventions

Question 4

Fill in the following testbench module with code that does the following:
(a) sets the value of \boldsymbol{n} to $\boldsymbol{0}$ in an initial block,
(b) terminates the simulation with \$stop() if the value of n is equal to $\mathbf{8}^{\prime} \mathrm{d} \mathbf{d 5 5}$,
(c) adds 1 to n every $5 \mu \mathrm{~s}$, and
(d) uses \$display() to print the value of n every $20 \mu \mathrm{~s}$.
module midterm_tb ;
logic [7:0] n ;
endmodule

Question 5
The following waveform shows the signals on an SPI interface. What value was transmitted from the master to the slave assuming the bits were transferred most-significant-bit first? Give you answer as a hexadecimal number. Show your work.

