
ELEX 2117 : Digital Techniques 2
2022 Fall Term

Solutions to Quiz 1

There were two versions of each question. The values and the answers for the two versions are given below.
Revision 2: Added reset!=0 transition conditions in Question 5.

Question 1

Define a Verilog lookup table named square (or
double) that can be used to determine the square (or
double the value) of a number between 0 and 7. The
result should be a 6-bit value between between 0 and
49 (or 14). For example, the expression square[5]
should have the value 6'd25 (or double[5] should
have the value 6'd10). Write only the lookup table
definition, not a complete module.

Solution

Following the example in the “Lookup Tables” sec-
tion of Lecture 1:

// 0 1 2 3 4 5 6 7
logic [0:7][5:0] square = '{ 0, 1, 4, 9,16,25,36,49} ;
logic [0:7][5:0] double = '{ 0, 2, 4, 6, 8,10,12,14} ;

Question 2

What minimum size of counter is needed to imple-
ment a timer that has a duration of 10 (or 20)msusing
a 2.5 MHz clock? Your answer should be the number
of bits. Show your work.
If this timer’s counter counts down to zero, what
range of values will the counter take on?

Solution

Following the method in Exercise 3 of Lecture 2:

• For a clock frequency of 𝑓𝑐𝑙𝑜𝑐𝑘 = 2.5 MHz, the
period is 𝑇𝑐𝑙𝑜𝑐𝑘 = 1/2.5×106 Hz = 400 ns.

• A timer duration of 10 ms requires 𝑁 =
10×10−3/400×10−9 = 25000 clock cycles.

• The smallest number of bits that can repre-
sent this number of values is 𝑚 ≥ log2𝑁 =
log2 25000 so we need 15 bits.

• If the timer counts down to zero then it must
count from 𝑁 − 1 to 0 or 24999 to 0 .

For a timer duration of 20 ms 𝑁 =
20×10−3 s/400×10−9 s = 50000 clock cycles,
⌈log2 50000⌉ = 16 is the smallest number of
bits that can represent values from 0 to 49999 and
the counter will count down from 49999 to 0 .

Question 3

Write a Verilog module named ymod corresponding
to the block diagram below. The block labelled ex63
represents a module named ex63 defined as:
module ex63
(input logic [3:0] a,
output logic [3:0] b) ;
//...

endmodule

Write only the module ymod. The module inputs and
outputs should be as shown in the diagram. The
module should include definitions for any additional
signal(s) required to instantiate the ex63module.

Solutions

For the block diagram:

ex63 D Q y
4 4 4

clock

the corresponding Verilog is:
module ymod
(input logic clock,
output logic [3:0] y) ;

logic [3:0] t ; // output of ex63

ex63 ex63_1 (y, t) ;

always_ff @(posedge clock)
y <= t ;

endmodule

which Quartus synthesizes to:

midterm1sol.tex 1 2022-10-10 09:58

ex63:ex63_1

a[3..0] b[3..0]

y[0]~reg[3..0]

D

CLK

SCLR
4'h0

Qclock

y[3..0]

For the block diagram:

ex63
y

4 4
4

sel

0

1

x
4

4

the corresponding Verilog is:
module ymod
(input logic [3:0] x,
input logic sel,
output logic [3:0] y) ;

logic [3:0] t ; // output of ex63

ex63 ex63_1 (y, t) ;

assign y = sel ? t : x ;

endmodule

which Quartus synthesizes to:

sel

x[3..0] y~[3..0]
0

1 y[3..0]
ex63:ex63_1

a[3..0] b[3..0]

Question 4

A state machine has a an input named rst, a clock
input named clk and an output named s. s can take
on the values 000, 001, 011, and 111. The state ma-
chine operates as follows:

• If rst is asserted (has the value 1) then s is set
to 000 (or 111).

• If rst is not asserted then s takes on the values
001, 011 and 111 (or 011, 001, and 000), in that
order, and then stays at the value 111 (or 000)
until rst is asserted again.

Write a state transition table for this statemachine.
Include columns for the current state, the rst input
and the next state.

Solutions

For the Verilog description:

state rst next state
xxx 1 000
000 0 001
001 0 011
011 0 111
111 0 111

For the Verilog description:

state rst next state
xxx 1 111
111 0 011
011 0 001
001 0 000
000 0 000

Question 5

Below is the Verilog code for a state machine. Draw
the state transition diagram. Label all states. Label
all transition conditions using Verilog expressions.

Solutions

For this code:
module blink
(input logic clock, reset,
output logic [3:0] leds) ;

always_ff @(posedge clock)
leds <= reset ? 4'b1000 :

leds == 4'b1000 ? 4'b1100 :
leds == 4'b1100 ? 4'b1110 :
leds == 4'b1110 ? 4'b1111 : leds ;

endmodule

the state variable is leds, the input is reset and the
transition diagram would be:

1000 1100 1110 1111

r r r

r: reset == 0

n: reset != 0

n n n

2

For this version of the question:
module blink
(input logic clock, reset,
output logic [3:0] leds) ;

always_ff @(posedge clock)
leds <= reset ? 4'b1111 :

leds == 4'b1111 ? 4'b0011 :
leds == 4'b0011 ? 4'b0001 :
leds == 4'b0001 ? 4'b0000 : leds ;

endmodule

the state transition diagram would be:

00000011 00011111

r r r

r:reset == 0

n:reset != 0

n n n

3

	Question 1
	Solution

	Question 2
	Solution

	Question 3
	Solutions

	Question 4
	Solutions

	Question 5
	Solutions

