TOP A00123456 TOP A00123456 TOP A00123456 TOP A00123456 TOP

ELEX 2117 : Digital Techniques 2 2022 Fall Term

MIDTERM EXAM 1 15:30 – 17:20 Friday, October 7, 2022 SW03-1710

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of sixteen (16) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work**.

This exam paper is for:

Sample Exam 1 A00123456

Each exam is equally difficult.

Answer your own exam.

Do not start until you are told to do so.

Name: _____

BCIT ID:	
-	

Signature:

0

Define a Verilog lookup table named **double** that can be used to determine double the value of a number between 0 and 7. The result should be a 6-bit value between between 0 and 14. For example, the expression double[5] should have the value 6 ' d10. Write only the lookup table definition, not a complete module.

Question 2

What minimum size of counter is needed to implement a timer that has a duration of 20 ms using a 2.5 MHz clock? Your answer should be the number of bits. Show your work.

If this timer's counter counts down to zero, what range of values will the counter take on?

Question 3

Write a Verilog module named **ymod** corresponding to the block diagram below. The block labelled ex63 represents a module named ex63 defined as:

```
module ex63
  ( input logic [3:0] a,
    output logic [3:0] b );
   11 . .
endmodule
```

Write only the module **ymod**. The module inputs and outputs should be as shown in the diagram. The module should include definitions for any additional signal(s) required to instantiate the ex63 module.

A state machine has a an input named **rst**, a clock input named **clk** and an output named **s**. **s** can take on the values 000, 001, 011, and 111. The state machine operates as follows:

- If rst is asserted (has the value 1) then s is set to 111.
- If rst is not asserted then s takes on the values 011, 001, and 000, in that order, and then stays at the value 000 until rst is asserted again.

Write a state transition table for this state machine. Include columns for the current state, the rst input and the next state.

2

A00123456

2 marks

2 marks

4 marks

4 marks

Below is the Verilog code for a state machine. Draw the state transition diagram. Label all states. Label all transition conditions using Verilog expressions.

```
module blink
  ( input logic clock, reset,
    output logic [3:0] leds ) ;
  always_ff @(posedge clock)
    leds <= reset ? 4'b1111 :
        leds == 4'b1111 ? 4'b0011 :
        leds == 4'b0011 ? 4'b0001 :
        leds == 4'b0001 ? 4'b0000 : leds ;
</pre>
```

endmodule

TOP A01234567 TOP A01234567 TOP A01234567 TOP A01234567 TOP

ELEX 2117 : Digital Techniques 2 2022 Fall Term

MIDTERM EXAM 1 15:30 – 17:20 Friday, October 7, 2022 SW03-1710

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of sixteen (16) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work**.

This exam paper is for:

Sample Exam 2 A01234567

Each exam is equally difficult.

Answer your own exam.

Do not start until you are told to do so.

Name: _____

BCIT ID:	

Signature:

Define a Verilog lookup table named **square** that can be used to determine the square of a number between 0 and 7. The result should be a 6-bit value between between 0 and 49. For example, the expression **square[5]** should have the value **6** ' **d25**. Write only the lookup table definition, not a complete module.

Question 2

What minimum size of counter is needed to implement a timer that has a duration of 10 ms using a 2.5 MHz clock? Your answer should be the number of bits. Show your work.

If this timer's counter counts down to zero, what range of values will the counter take on?

Question 3

Write a Verilog module named **ymod** corresponding to the block diagram below. The block labelled **ex63** represents a module named **ex63** defined as:

```
module ex63
  ( input logic [3:0] a,
      output logic [3:0] b );
  //...
endmodule
```

Write only the module **ymod**. The module inputs and outputs should be as shown in the diagram. The module should include definitions for any additional signal(s) required to instantiate the **ex63** module.

Question 4

A state machine has a an input named **rst**, a clock input named **clk** and an output named **s**. **s** can take on the values **000**, **001**, **011**, and **111**. The state machine operates as follows:

- If **rst** is asserted (has the value 1) then **s** is set to **000**.
- If rst is not asserted then s takes on the values 001, 011, and 111, in that order, and then stays at the value 111 until rst is asserted again.

Write a state transition table for this state machine. Include columns for the current state, the **rst** input and the next state.

2

A01234567

2 marks

4 marks

4 marks

Below is the Verilog code for a state machine. Draw the state transition diagram. Label all states. Label all transition conditions using Verilog expressions.

```
module blink
  ( input logic clock, reset,
      output logic [3:0] leds ) ;
    always_ff @(posedge clock)
      leds <= reset ? 4'b1000 :
         leds == 4'b1000 ? 4'b1100 :
         leds == 4'b1100 ? 4'b1110 :
         leds == 4'b1110 ? 4'b1111 : leds ;
endmodule</pre>
```