Analog Interfaces

Exercise 1: Draw a sine wave and indicate two sets of sampling points at twice the frequency of the sine wave: one that demonstrates aliasing and one that does not. Is it sufficient to sample at twice the highest frequency of the analog signal?

no, must sample at > 2x fnax.

Exercise 2: What minimum sampling rate would be required to digitize a 10 kHz square wave if you wanted to include frequency components up to the 7'th harmonic (at 70 kHz)?

Exercise 3: A signal with range of ± 3 V must be quantized so that the quantization error is less than 1 mV. What minimum number of bits of resolution is required?

$$V = 6V$$

$$-3 V = 1092 = 0.001$$

$$V = 6V$$

$$V = 6V$$

$$V = 1092 = 109$$

Exercise 4: A signal-to-noise power ratio of about 48 dB is considered good enough for speech communication. Approximately how many bits per sample are required to obtain this quantization SNR?

Exercise 5: When quantizing a full-scale sine wave, what quantization SNR would be achieved with a resolution of 12 bits? What if the signal's voltage range was only half of the full-scale range?

Exercise 6:

Assume V_1 is set to $V_{\rm ref}$ and all other inputs are zero (grounded). Find the Thevenim resistance (resistance to ground at $V_{\rm out}$ with all V_i shorted) and voltage ($V_{\rm out}$ with $V_1 = V_{\rm ref}$).

Exercise 8: You are designing a PWM DAC and need resolution of 1 mV with a full-scale output of 12 V. How many bits of resolution are required? The pulse frequency is 10 kHz. What is the clock frequency?

quency?
$$\Delta = \frac{\sqrt{2}}{2^n} \qquad N = ?$$

$$\Delta = 0.001$$

$$\Delta = \sqrt{2} \qquad \sqrt{2^n} \qquad \sqrt$$

Exercise 9: Rank the different DACs described above in terms of sampling rate relative to clock rate and complexity relative to resolution.

		Camplexity	or cost
type	5peed	ا ما در	digital
binary weighted	fastest (ts = folock)	high	(οω
PWM	$f_s = \frac{f_{clock}}{z^n}$ slower	(0 W	medium hisher
∑-△	(> some as pwm)	lower.	higher

Exercise 10:

Draw a diagram showing the voltage ranges, the comparator outputs and the binary output for the 4-bit flash ADC above.

Exercise 12: What is the slope of an integrator, in V/s, when charging a 100 nF capacitor with 5 V through a $100~k\Omega$ resistor?

2

ing a 100 nF capacitor with 5 V through a
$$100 \, k\Omega$$
 resistor?

$$i = \frac{V}{R} = \frac{50 \, \text{MA}}{100 \, \text{K}} = \frac{50 \, \text{MA}}{0.1 \, \text{M}} = \frac{500 \, \text{M}}{0.1 \, \text{M}} = \frac{5$$

Exercise 13: Rank the different ADCs described above in terms of sampling rate relative to clock rate and complexity relative to reso-

complexity

lustia a	ı ' '	\	
lution.	fclode/fs	8nglog	dijital
flash	1 (fast)	high (2h comporators)	medium
SAR	~ (mudium)	predium (Scouste R-2R) Intwork)	m e dibm
		16W	medium
2-0	2 h (slow)		\6W
dual-slope	2 ~ (slowest)	\6W	