Timing Analysis ## Exercise 1: | er? | from | to | | |---------|---------------|---------------------------------|--| | A: C D: | in 2
out 1 | in 2
out 1
out 1
out 2 | requirenet
guaranteed
guaranteed
guaranteed | **Exercise 2**: Is t_{PD} a requirement or a guaranteed response? Exercise 3: Is t_{SU} a requirement or a guaranteed response? How about t_H ? LSU & the averboth we solved to an input \Rightarrow both we quirements. ## Exercise 4: $$t_{\text{SU}}$$ (avail) = T_{Clock} - t_{CO} (max) - t_{PD} (max) Which of the specifications in the formula above decrease the available setup time as they increase? Which increase it? **Exercise 5**: For a particular circuit f_{clock} is 50 MHz, t_{co} is 2 ns (maximum), the worst-case (maximum) t_{PD} in a circuit is 15 ns and the minimum setup time requirement is 5 ns. What is the setup time slack? Will this circuit operate reliably? If not, what it the maximum clock frequency at which it will? following a which it will? $$f_{clock} = 50 \text{ MHz} \rightarrow T_{olock} = \frac{1}{f_{clock}} = \frac{1}{50 \times 106} = 20 \text{ ns.}$$ $$f_{sv} (avail) = T_{olock} - t_{co} - t_{PD}$$ $$= 20 - 2 - 15 = 3 \text{ ns.}$$ $$= 3 + 5 = -2 \text{ ns}$$ $$= 3 + 5 = -2 \text{ ns}$$ $$= 50 \text{ lw for } T_{clock} = 5 \text{ ns} = T_{clock} - t_{co} - t_{PD}$$ $$= 5 + 2 + 15 = 22 \text{ ns}$$ $$f_{clock} = 5 + 2 + 15 = 22 \text{ ns}$$ **Exercise 6**: What is the maximum clock frequency for a counter using flip-flops with 200 ps setup times, 50 ps had times and adder logic that has a 250 ps propagation delay? Tolock = ? $$t_{50} = 200 ps$$ $t_{c0} = 50 ps$ $t_{pp} = 230 ps$ $T_{clock} = t_{50} + t_{co} + t_{pp} = 500 ps$ $2 GHz$