State Machines
Exercise 1:

Draw the schematic for this state machine. Write an always_ff statement that implements this state machine.

$$
\begin{aligned}
&\text { always_ff@(posedge } d k) \\
& \text { runE } \text { run }==0 \text { \&\& stor\&\& ! stop? 1: } \\
& \text { run }==1 \text { \&\& stop? } 0: \\
& \text { ron; }
\end{aligned}
$$

Exercise 2: Simplify the solution using the fact that addition of 1 to 3 "wraps" a 2 -bit value to 0 . What would you change so the counter does not "wrap around" from 2'b11 to 2'b00?
module ex56
(output logic [1:0] count,
input logic reset, elk);
always_ff @(posedge clk) count
<= reset ? 2'boo :
count $==2^{\prime}$ b11
count + 1'b1 ;
verve line counters l"wrop around"
endmodule

Exercise 3：What value of N would give a 20 ms delay if the clock frequency is 50 MHz ？How many bits are needed for this timer＇s register？

$$
\begin{aligned}
& N=\frac{20 \mathrm{~ms}}{20 \mathrm{~ns}}=\frac{10^{-3}}{10^{-9}} \\
& \text { 几几 } \\
& =10^{6} \\
& f_{\text {ploce }} 50 \mathrm{MHz} \\
& T_{\text {clock }}=\frac{1}{f_{\text {clock }}}=\frac{1}{50 \times 10^{6}}=20 \mathrm{~ns} \\
& 999,999 \rightarrow 0 \\
& 2^{10} \rightarrow 1024 \\
& \begin{aligned}
220 & \rightarrow(1024)^{2} \\
& \approx 10^{\circ} .
\end{aligned} \\
& 2^{30} \approx 10^{9} \\
& 2^{40} \approx 10^{12}
\end{aligned}
$$

Exercise 4：Assume the timer above is reset to $N-1$ each time it reaches 0 ．For how long is the register value 0 ？What are the period and frequency of a signal that is inverted each time the count reaches 0 ？
it＇s O for 1 clock period

$$
0,999,999, \ldots 1,0,9999999, \ldots 1,0,999991
$$

Exercise 5: Write the state transition table for the state machine for the lights output.

Exercise 6: The example above is an N -bit shift register that shifts the bits right. Draw a block diagram and write the Verilog for a 6-bit shift register that shifts left.
 $\dot{\square} \gg$

$$
\begin{gathered}
\{q[4: 0], i n\} \rightarrow q \\
c \mid k \square
\end{gathered}
$$

$$
\begin{aligned}
& \text { module (input logic in, ck, } \\
& \text { alway_ff @(posedge cl) } \\
& q<=\{q[4: 0], \text { in }\} \text {, }
\end{aligned}
$$

Fill in the diagram above for a 4-bit $(N=4)$ right-shift shift register. Assume the initial value is zero. Which bit is the oldest (first) value in the waveform? Which bit of the shift register holds the oldest value? in

Exercise 8: Draw a block diagram and write the Verilog for a circuit that sets an output named detect high when the sequence of values $1,1,0,1$ has appeared on an input named in on successive rising edges of the clock.

cIV
module detector (input logic in, alk, output logic
$g_{i} c[3: 0] q ;$

$$
\begin{aligned}
& \operatorname{logic}_{\mathrm{l}}[3: 0] q ; \\
& \text { alwags_ff } O(\text { posedge clk) } \\
& q<=\{\text { in, } q[3: 1]\} ;
\end{aligned}
$$

$$
\text { assign detect }=q==4^{\prime} b 1011 ;
$$

end module;

Exercise 9: For which states would falling be asserted? rising? Draw the schematic and write the Verilog for this state machine. Assume an input in and a 2-bit register bits that holds the two most recent input values.
S.r. shifts left
falling asserted for 1 followsedly 0 : $s t a t e=10$ vising for state $=01$

$$
\begin{aligned}
& \text { [} 7 \text { - in }
\end{aligned}
$$

mode edge-detector (input logic in, alk output logic rising, falling);

$$
\operatorname{logic}[1: 0] \text { bits; }
$$

alway_fte(posedge alk)

$$
\text { bits }<=\{9[0], \text { in }\} ;
$$

assign rising $=$ bits $==2$ 'bol;
assign falling $=$ bits $==2 \cdot b 10$;
end module

Exercise 10: How could you modify the code so that digits is only updated when an enable input is asserted?
always_ff @(posedge elk) digits

mostrecont

$$
<=\text { enable? }\{\text { digits }[1 \cdot 3] \text {, digit }\} \text { : digits; }
$$

Exercise 11: How many states can this state machine have?

$$
\begin{aligned}
16 \times 16 \times 16 \times 16 & =\left(2^{4}\right)^{4} \\
& =2^{16}
\end{aligned}
$$

16 bits $\rightarrow 2^{16}$ possible values (states) (if constraint digit to $0-9$ then $10 \times 10 \times 10 \times 10=10^{4}$ possible states).

Exercise 12: Draw the state transition diagram for this simpler ioplementation. How many states are there? Write the Verilog using a 3-bit count state variable.

$$
5 \text { states }(0-4)
$$

Exercise 13: Write always_ff statements that implement these two state machines.
or:

$N-1$	0	$N-2$
$N-2$	0	$N-3$
	0	
4	0	3
0	0	2
3	0	2
2	0	1
1	0	0

always ff $@($ posedge clock)

$$
\begin{gathered}
\text { count }=\text { in }==\text { out? } N-1: \\
\text { count }==0 ? N-1: \\
n-1 ;
\end{gathered}
$$

alway-ff@(posedge clock) out \Leftarrow count $==0$? in: out;

Exercise 14: What is the size of the expression sqrt*sqrt? Of \{8'b0, sqrt $\} *$ squirt?

Exercise 15: Draw the state transition diagram for done.

Exercise 16: If we used 8 -bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

$$
\begin{gathered}
00000000 \\
0000001 \\
004 \\
004
\end{gathered}
$$

$$
1 \cdots 1 \cdots
$$

