Introduction to Digital Design with Verilog HDL

Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was

$$
\text { assign } \mathrm{y}=(\mathrm{a} \text { - } \mathrm{b}) \mid \mathrm{c} \text {;? }
$$

Exercise 3: What are the lengths and values, in decimal, of the following:

4'b1001?

5'd3?

6'h0_a?

Exercise 4: If the signal i is declared as logic [2:0] i;, what is the 'width' of i?

If i has the value 6 (decimal), what is the value of $i[2] ?$

Of i [0]?

Exercise 5: An array declared as logic [15:0] n; and has the value 16 'h1234. What are the values and lengths of the following expressions?
n[15:13]
! n
$\sim n[3: 0]$
n>>4
n + 1'b1
$\mathrm{n}[7: 0]-\mathrm{n}[3: 0]$
n >= 16'h1234
n - '1
n \&\& ! n
$\mathrm{n} *(!\mathrm{n}+1 \mathrm{~b} 1)$

Exercise 6: What are the length and value of the expression: 3 ? 16'd10 : 8'h20?

If x has the value 0 , what is the value of the expression: x ? 1'b1 : 1'b0?

If x has the value -1 ?

Exercise 7: Draw the schematics corresponding to: $\mathrm{y}=\mathrm{a}$? (b ? s1 : s2) : (c ? s3 : s4);

$$
\mathrm{y}=\mathrm{a} ? \mathrm{~s} 1: \mathrm{b} \text { ? s2 : c ? s3 : s4; }
$$

Exercise 8: Use slicing and concatenation to compute the byteswapped value of an array n declared as logic [15:0] n .

Exercise 9: If n has the value $16^{\prime} \mathrm{h} 1234$, what is the value and length of:

$$
\left\{\mathrm{n}[7: 0], \mathrm{n}[15: 8], 4 \mathrm{l}^{\prime} \mathrm{b} 1111\right\} ?
$$

Exercise 10: Use concatenation to shift n left by two bits.

Exercise 11: Use concatenation to assign the high-order byte of n to a and the low-order byte to b .

Exercise 12:

assign y = a + 1 ;
Some software warns about truncation. How could you re-write the assign statement to avoid such a warning?

Exercise 13: Write an always_ff statement that toggles (inverts) its output on each rising edge of the clock.

Exercise 14:

Identify the following in the diagram above: component names, component "instance names," component port names, module port names. Label the signal t in the schematic.

Exercise 15: Rewrite the ex60 module using operators. Which version - "structural" or "behavioural" - is easier to understand?

Exercise 16:

How would you specify the bit marked A in the diagram above?

The bits marked B ?

The least-significant byte?

Exercise 17: Define a Verilog lookup table named isprime that can be used to determine if a value between 0 and 7 is a prime number or not. The result should be 1 if the value is a prime or else 2 . Hint: The primes are 2, 3, 5 and 7.

Exercise 18: Write an expression giving the same result. Draw the corresponding block diagram.

