
ELEX 2117 : Digital Techniques 2
2022 Fall Term

Introduction to Digital Design with Verilog HDL

This is a brief introduction to digital circuit design using the SystemVerilogHardwareDescription Language (VerilogHDL).
After this lecture you should be able to:

• define a module with single- and multi-bit logic inputs and outputs;
• write Verilog numeric literals in binary, decimal and hexadecimal bases;
• declare arrays and arrays of arrays;
• evaluate the value and length of expressions containing logic signals, arrays, numeric literals and the operators
described below;

• use assign, always_ff and component instantiation statements to define combinational logic, registers, and in-
stantiate one module in another.

Introduction

Hardware Description Languages (HDLs) are used to
design digital circuits. In this course we will use Sys-
tem Verilog, the modern version of the Verilog HDL,
rather than the other popular HDL, VHDL.
Let’s start with a simple example – a circuit called

an ex1 that has one output (y) that is the logical AND
of two input signals (a and b). The file ex1.sv con-
tains the following Verilog description:
// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Some observations on Verilog syntax:

• Everything following // on a line is a comment
and is ignored.

• Module and signal names can contain letters,
digits, underscores (_), and dollar signs ($). The
first character of an identifier must be a letter or
an underscore. They cannot be the same as cer-
tain reserved words (e.g. module).

• Verilog is case-sensitive: a and A would be dif-
ferent signals.

• Statements can be split across any number of
lines. A semicolon ends each statement.

Capitalisation and indentation styles vary. In this
course you will need to follow the coding style guide
available on the course website.

Themodule definition begins by defining the input
and output signals for the device being designed.
The body of themodule contains one ormore state-

ments, each of which operates at the same time – con-
currently. This is the key difference between HDLs
and programming languages – HDLs allows us to de-
fine concurrent behaviour.
The single statement in this example is a signal as-

signment that assigns the value of an expression to
the output signal y. Expressions involving logic sig-
nals can use the logical operators described below in-
cluding & (AND). Parentheses can be used to order
the operations.
From this Verilog description a program called a

logic synthesizer (e.g. Intel’s Quartus) can generate a
circuit that has the required functionality. In this case
it’s not too surprising that the result is the following
circuit:

a
y

b
y

If you’re familiar with the C programming language
you’ll note that Verilog uses similar syntax.
Exercise 1: What changes would result in a 3‑input OR gate?
Exercise 2: What schematic would you expect if the statement was
assign y = (a ^ b) | c ;?

Syntax

Reserved Words

System Verilog has about 250 reserved words (in-
cluding many common ones such as time, wait,

lec1.tex 1 2022-09-09 00:11

disable, reg, table, input, …) that may not be
used as module or signal names. Doing so will give a
syntax error when you try to compile (“synthesize”)
the description. An editor with syntax highlighting
will help you identify and avoid using reservedwords.

logic values

Verilog’s logic signals can have four values: 0 (false
or low), 1 (true or high), z (high impedance) and x
(undefined).

Numeric Literals

Numeric literals, often called “constants,” are written
as a sequence of up to three parts: the number of bits;
the letter 'b for binary, 'h for hex, or 'd for decimal;
and the value in the specified base. The default width
is 32 and the default base is decimal. Underscores (_)
may be used within the value to improve readability.
Exercise 3: What are the lengths and values, in decimal, of the fol‑
lowing: 4'b1001, 5'd3, 6'h0_a, 3?
The notations '0 and '1 are convenient abbrevia-

tions for a literal that is all-zeros or all-ones.

Arrays

An array is a collection of logic signals whose ele-
ments can be selected by a value called the index. Ar-
rays often represent numerical values in binary form.
For example, the declaration logic [3:0] a;

specifies an array named awith a ‘width’ of four bits.
In this example the bit indices are declared as go-

ing from 3 down to 0. If the bit values are written out
and represent a binary number then a[3], the left-
most bit, is the most significant bit. a[0] is the right-
most (least significant) bit.
Exercise 4: If the signal i is declared as logic [2:0] i;, what is
the ‘width’ of i? If i has the value 6 (decimal), what is the value of
i[2]? Of i[0]?

Expressions

Logic circuits in HDLs are defined using expressions
as shown above. These include operators that oper-
ate on “operands” – numeric literals (“constants”),
logic signals and arrays of these. Operators with
higher “precedence” are applied before those of lower

precedence. If two operators are of equal prece-
dence they are applied from left to right. Operators
can change the number of bits in an expression (the
“length”) as they’re applied. Values are padded with
zeros on the left when necessary.

Operators

The following describe some useful Verilog operators
in order of decreasing precedence.

Slices A range of bits in an array (a “slice”) can
be extracted using a range of indices in brackets
([first:last]) after the array name. The bit order
cannot be reversed. The length is the number of
bits in the slice.

Negation Logical negation (!) is zero (0) when ap-
plied to a non-zero operand and one (1) other-
wise. The length is 1 bit.
Bitwise negation (~) inverts the value of each bit.
The length is the width of the operand.

Arithmetic Multiplication (*) , division (/), addi-
tion (+) and subtraction (-) can be applied to
arrays. The first two have higher precedence.
The length is the largest of the two operands’
lengths.

Shift Right- (>>) and left-shift (<<) operators shift
the bits in the array operand on the left by the
value on the right. The length is the length of
the left operand.

Comparison When arithmetic comparison opera-
tors (<, >, <=, >=, ==, !=) are applied to arrays the
result is 1 if the comparison is true and 0 other-
wise. The length is 1 bit.

Bitwise Logical Bitwise logical operators (&, |, ^)
are applied to the corresponding bits in two
operands. The length is the largest of the two
operands’ lengths.

Logical The logical AND operator (&&) has value 1
if both operands are non-zero. The logical OR
operator (||) has value 1 if either operand is
non-zero. The length is 1 bit.
Exercise5: Anarraydeclaredaslogic [15:0] n; andhas
the value 16'h1234.

What are the values and lengthsof the followingexpressions?

2

n[15:13]

!n

~n[3:0]

n>>4

n + 1'b1

n[7:0] - n[3:0]

n >= 16'h1234

n ^ ~n

n && !n

n * (!n + 1'b1)

Conditional Operator Verilog’s conditional oper-
ator is a concise syntax for describing a two-
way multiplexer. The operator consists of three
parts: the condition, the true value and false
value. The result of the operator is the true value
if the condition is non-zero, or the false value
otherwise. The length is the largest of the true
and false value lengths. For example:

assign y = sel ? a : b ⇔
sel

a

b
y

1

0

sets y to a when sel is non-zero and sets y to b
when sel is zero.
Exercise 6: What is the value of the expression 3 ? 10 :

20? Of the expression x ? 1 : 0 if x has the value 0? If x
has the value ‑1?

The following example implements a multi-
plexer that selects from one of two 4-bit inputs:
module ex36 (input logic sel,

input logic [3:0] a, b,
output logic [3:0] y) ;

assign y = sel ? a : b ;

endmodule

which results in:

sel

b[3..0]
y[3..0]

y~[3..0]
0

1
a[3..0]

Conditional operators can be used to concisely
describe trees of multiplexers. In the absence of
parentheses a sequence of conditional operators
is evaluated from left to right.

Exercise 7: Draw the schematics corresponding to:

y = a ? s1 : b ? s2 : c ? s3 : s4;

y = a ? (b ? s1 : s2) : (c ? s3 : s4);

Concatenation The concatenation operator ({,})
combines expressions into a longer value. The
length is the sum of the lengths.

Exercise 8: Use slicing and concatenation to compute
the byte‑swapped value of an array n declared as logic
[15:0] n.

Exercise 9: If n has the value 16'h1234, what is the value
and length of {n[7:0],n[15:8],4'b1111}?

Exercise 10: Use concatenation to shift n left by two bits.

Concatenations of variables can also be used on
the left hand side of an assignment.

Exercise11: Useconcatenation toassign thehigh‑orderbyte
of n to a and the low‑order byte to b.

Assignment Assignments (=, <=) connects the
right-hand side (RHS) expression to the signal
on the left-hand side (LHS). Use = in assign
statements and <= in always_ff statements.

The length is the length of the LHS. The left-
most bits are dropped if the RHS is wider than
the LHS.

Arrays of Arrays

We can also declare arrays of arrays. For example,
logic[3:0][7:0] w; declares w as an array of four
arrays of eight bits. A single index selects one of the
bytes, two indices selects a byte as well as a bit from
that byte:

w

w[3][7]

w[3] w[2] w[1] w[0]

w[3][0] w[0][0]w[0][7]
AB

Exercise12: Howwould you specify thebitmarkedA in thediagram
above? The bits marked B? The least‑significant byte?

Lookup Tables

Initialized arrays of arrays can serve as look-up tables.
In this example:

3

// 0 1 2 3 4 5 6 7
logic [0:7][2:0] onebits = '{0,1,1,2,1,2,2,3} ;
logic [3:0] n ;
...
assign ... = onebits[n] ;

onebits is a table that can be used to look up the
number of ‘1’ bits in the binary representation of a
number between 0 and 7. The index is the to look up
and the value in the array is the number of bits that
have the value ’1’. The expression onebits[n] can
be used to find the number of ‘1’ bits in n.
Exercise 13: Define a Verilog lookup table named isprime that
can be used to determine if a value between 0 and 7 is a prime num‑
ber or not. The result should be 1 if the value is a prime or else 0.
Hint: The primes are 2, 3, 5 and 7.

Statements

Statements in a module execute concurrently and
thus may be written in any order.
In this course we will only use the assign,

always_ff, and component instantiation state-
ments.

assign

The assign statement continuously assigns the
value of the expression on the RHS to the signal on
the LHS.

always_ff

The always_ff statement is used to synthesize flip-
flops and registers. For example, the following Ver-
ilog:
module ex2 (input logic [3:0] d,

input logic clk,
output logic [3:0] q) ;

always_ff @(posedge clk)
q <= d ;

endmodule

synthesizes a 4-bit D flip-flop that transfers the d in-
put to the q output on the rising (positive) edge of
clk:

d

clk q

q~reg0

D

CLK

SCLR
1'h0

Q

Exercise 14: Write an always_ff statement that toggles (inverts)
its output on each rising edge of the clock.

Component Instantiation

Module instantiation inserts a copy of (“instanti-
ates”) one module into another and connects signals
to the instantiated module’s inputs and outputs. For
example, the module:
module ex60 (input logic x, y, z,

output logic c) ;

logic t ;

ex1 ex1_1 (x, y, t) ;
ex1 ex1_2 (z, t, c) ;

endmodule

creates a 3-input AND gate by instantiating two in-
stances of the ex1module we defined earlier:

z

x

ex1:ex1_2

a

b

y

ex1:ex1_1

a

b

y

y

c

Exercise 15: Label the signal t in the schematic.
Exercise 16: Rewrite the ex60module using operators. Which ver‑
sion – “structural” or “behavioural” – is easier to understand?

4

	Introduction
	Syntax
	Reserved Words
	logic values
	Numeric Literals

	Arrays
	Expressions
	Operators

	Arrays of Arrays
	Lookup Tables

	Statements
	assign
	always ff
	Component Instantiation

