ELEX 2117 : Digital Techniques 2
2022 Fall Term

FINAL EXAM
14:30-17:30
Tuesday, December 6, 2022
SW09-110

This exam has nine (9) questions on three (3) pages. The marks for each question are as indicated. There are a total of thirty-eight (38) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. Show your work.

This exam paper is for:
Sample Exam 1 A00123456

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Signature:

Write a Verilog module named alu corresponding to the diagram shown below. The module has a w-bit input B, a 2-bit input op, a clock input clk, and a w-bit registered output A. The module declaration should include a parameter named w for the bus widths with a default value of 16 . The use of the signals x and y is optional but they must be declared if they're used. Bits should be numbered in decreasing order. Follow the course coding conventions. You may omit comments.

Question 2
Fill in the table below with the value of the each expression. Give the answers as Verilog numeric literals including the length and using a hexadecimal base. Assume the following declarations:
logic [7:0] x = 8'h5a ;
logic [3:0] y = 4'b0011 ;

expression	value	
$\{x[3: 0], x[7: 4]\}$		
$!x \\| x$		
$\sim x \mid x$		
$x \gg 1+1$ 'b1		
$2 * y$		
$x[1: 0]>y$		
$x^{\wedge} y$		
$!y ? x: x^{\wedge} y$		

Draw the waveforms that would be used to transfer a byte that has the value 8'h53 (in Verilog notation) from the slave to the master over an SPI interface. Draw the waveforms for $\overline{\mathrm{SS}}$, and the appropriate data signal (either MOSI or MISO, but not both). Follow the conventions shown in the lecture notes, including the timing of $\overline{S S}$ relative to the data, the data relative to SCLK, and that the most significant bit is transferred first.

Question 4
2 marks

A 5 V TTL IC has V_{IH} of 2 V and V_{IL} of 0.5 V . It is driven by a 3.3 V CMOS IC that has V_{OH} of 3.2 V and V_{OL} of 0.6 V . What are the noise margins? Will this interface work correctly?

Question 5

4 marks

A logic circuit operates at a clock rate of 10 MHz . The propagation delays through the combinational logic paths from flip-flop outputs to flip-flop inputs range from 10 to 25 ns . The flip-flop maximum clock-to-output delay, t_{co}, is 20 ns and the required minimum setup time is $t_{\mathrm{su}}=10 \mathrm{~ns}$. What is the slack? Will this circuit work reliably?

Question 6

An engine vibration analyzer needs to sample and digitize an analog sensor signal with a voltage between -1 and 1 volts that contains frequencies up to 200 Hz .
(a) What sampling rates would avoid aliasing?
(b) How many bits of resolution are required if the voltage resolution - the difference between quantized values - must be less than 5 mV ? Your answer should be an integer.

Draw a block diagram for the following Verilog module. Follow the course conventions for block diagrams.

```
module exam
    ( input logic start, clock,
        output logic [15:0] count ) ;
    always_ff @(posedge clock) count
        <= start ? 16'b1 :
        count[15] == 1'b1 ? 16'b1 :
        count << 1 ;
```

endmodule

The following diagram shows an oscilloscope screen capture that includes one period of a digital waveform. The scale on the horizontal axis is 20 ns per division. What are the values of the following (give your answers in nanoseconds):

(a) rise time:
(b) negative pulse width:
(c) period:

Question 9

Write the state transition table for a state machine that has the following state transition diagram. The state machine has two one-bit inputs: r and f. The value in each circle is the 2-bit binary encoding of that state. The Verilog expression above a state transition defines the condition for a transition between the two states. Conditions that do not result in a change of state are not shown.

Include columns for the current state, the r and f inputs, and the next state. You may use the conventions described in the lecture notes including \mathbf{x} for "don't-care." You need not include input conditions that do not result in a change of state.

ELEX 2117 : Digital Techniques 2
 2022 Fall Term

FINAL EXAM
14:30-17:30
Tuesday, December 6, 2022
SW09-110

This exam has nine (9) questions on three (3) pages. The marks for each question are as indicated. There are a total of thirty-eight (38) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. Show your work.

This exam paper is for:
Sample Exam 2 a01234567

Each exam is equally difficult.

Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Signature:

Write a Verilog module named alu corresponding to the diagram shown below. The module has a w-bit input B, a 2-bit input op, a clock input clk, and a w-bit registered output A. The module declaration should include a parameter named w for the bus widths with a default value of 16 . The use of the signals x and y is optional but they must be declared if they're used. Bits should be numbered in decreasing order. Follow the course coding conventions. You may omit comments.

Question 2
Fill in the table below with the value of the each expression. Give the answers as Verilog numeric literals including the length and using a hexadecimal base. Assume the following declarations:
logic [7:0] x = 8'ha5 ;
logic [3:0] y = 4'b0011 ;

expression	value	
$\{x[3: 0], x[7: 4]\}$		
$!x \\| x$		
$\sim x \mid x$		
$x \gg 1+1^{\prime} b 1$		
$2 * y$		
$x[1: 0]>y$		
$x^{\wedge} y$		
$!y ? x: x^{\wedge} y$		

Draw the waveforms that would be used to transfer a byte that has the value 8'h35 (in Verilog notation) from the master to the slave over an SPI interface. Draw the waveforms for $\overline{\mathrm{SS}}$, and the appropriate data signal (either MOSI or MISO, but not both). Follow the conventions shown in the lecture notes, including the timing of $\overline{S S}$ relative to the data, the data relative to SCLK, and that the most significant bit is transferred first.

Question 4
2 marks

A 5 V TTL IC has V_{IH} of 2 V and V_{IL} of 0.5 V . It is driven by a 3.3 V CMOS IC that has V_{OH} of 3.2 V and V_{OL} of 0.3 V . What are the noise margins? Will this interface work correctly?

Question 5

4 marks

A logic circuit operates at a clock rate of 20 MHz . The propagation delays through the combinational logic paths from flip-flop outputs to flip-flop inputs range from 10 to 25 ns . The flip-flop maximum clock-to-output delay, t_{co}, is 20 ns and the required minimum setup time is $t_{\mathrm{su}}=10 \mathrm{~ns}$. What is the slack? Will this circuit work reliably?

Question 6

An engine vibration analyzer needs to sample and digitize an analog sensor signal with a voltage between -1 and 1 volts that contains frequencies up to 100 Hz .
(a) What sampling rates would avoid aliasing?
(b) How many bits of resolution are required if the voltage resolution - the difference between quantized values - must be less than 10 mV ? Your answer should be an integer.

Draw a block diagram for the following Verilog module. Follow the course conventions for block diagrams.

```
module exam
    ( input logic start, clock,
        output logic [15:0] count ) ;
    always_ff @(posedge clock) count
        <= start ? 16'b1 :
        count[15] == 1'b1 ? 16'b1 :
        count << 1 ;
```

endmodule

The following diagram shows an oscilloscope screen capture that includes one period of a digital waveform. The scale on the horizontal axis is 10 ns per division. What are the values of the following (give your answers in nanoseconds):

(a) rise time:
(b) negative pulse width:
(c) period:

Question 9

Write the state transition table for a state machine that has the following state transition diagram. The state machine has two one-bit inputs: r and f. The value in each circle is the 2-bit binary encoding of that state. The Verilog expression above a state transition defines the condition for a transition between the two states. Conditions that do not result in a change of state are not shown.

Include columns for the current state, the \mathbf{r} and f inputs, and the next state. You may use the conventions described in the lecture notes including x for "don't-care." You need not include input conditions that do not result in a change of state.

