
ELEX 2117 : Digital Techniques 2
2021 Fall Term

Verification

This lecture describes how digital systems are tested.
After this lecture you should be able to select an appropriate verification strategy including: selecting simulation or hard-
ware testing; stimulus-only or self-checking testbenches; selection of test inputs; use of “known-good” models; unit testing;
regression testing; distinguish between functional (RTL) and gate-level (timing) simulations; use delays and event controls
to generate waveforms in a System Verilog testbench.

Design Verification

Verification is checking that a design meets require-
ments. Verification typically requires more time and
effort than the initial design and is typically done by
simulation.

Functional (RTL)versusTiming (Gate‑Level) Sim‑
ulation

The following diagram shows the steps involved in
the design and verification of a digital logic circuit.

HDL

netlist

P
&

R

functional
simulation

timing
simulation

programming
file (FPGA)or
GDSII (geometry
for ASIC)

back-
annotation

delays

6

4

4
2

3

s
y
n

th
e

s
is

The logic synthesizer generates a netlist that de-
scribes how the components (gates, flip-flops, etc) are
connected. The place and route (P&R) step places
the components at specific locations on the IC and
connects them using the metal layers of an ASIC or
a PLD’s routing resources. The P&R step determines
the delays between components.
Simulations can verify both the correct function-

ing of the design (“functional verification”) and that
it will operate at the required clock frequency (“tim-
ing simulation”).
Functional testing verifies the design by assum-

ing zero propagation delay through combinational
logic and interconnects. This checks that the logical
(“functional”) design is correct. This can be done be-
fore mapping the design to gates and placing these at
specific locations of the IC because propagation de-
lays do not affect the results.

Timing simulation verifies that the design will
behave correctly with the actual signal delays that
will appear in the final design. This requires that
the delays estimated from P&R are added (“back-
annotated”) to the netlist.

Types of Testbenches

A simulation consists of the device (or design or unit)
under test (DUT/UUT), plus additional code called a
testbench that applies inputs to the DUT and checks
its output:

testbench

DUT

stimulus
 inputs

response
 outputs

test vectors

Stimulus‑Only

The simplest testbench applies inputs to theDUT and
saves the inputs and outputs to a file so a designer can
view them. These testbenches are useful during the
initial design process.

Self‑Checking

Once initial testing is complete, it’s desirable to en-
sure that subsequent changes to the design do not
introduce errors (“regressions”). Manually checking
the outputs after each change would be tedious and
error-prone. Once the expected outputs have been es-
tablished, a “self-checking” testbench can check the
outputs itself and flag any differences.

lec9.tex 1 2021-11-15 12:55

Generating Test Vectors

Test vectors are the values to be applied to the DUT
and the corresponding expected outputs.
Test vectors can be generated by the testbench it-

self (e.g. in a loop or using a random number genera-
tor) or they can be read from a file generated by other
software.

Ɪnputs

Usually there are too many possible combinations of
inputs to be able to test them all. However, enough
test vectors should be generated to ensure a reason-
able confidence in the correct operation of the design.
Test vectors should include:

1. typical input values,
2. minimum/maximum valid input values,
3. invalid inputs and
4. randomly-chosen values.

Exercise 1: Give examples of appropriate test inputs for each of the
above categories if you were testing: (a) an 4x8‑bit multiplier with
a 10‑bit output, (b) a frequency divider using an 8‑bit timer?

Outputs

For very simple designs it may be possible to compute
the correct outputs manually. But for more complex
designs thiswould take too long or be too error-prone.
In this case the correct outputs have to be generated
by software.
This requires that there be a “known-good” soft-

ware model of the desired behaviour that has been
independently verified. How this is done depends on
the application.

Test Strategies

Unit Testing

It’s often more effective to test components of a de-
sign individually rather than the complete design.
This “unit testing” makes it easier to isolate the
source of a problem.
It’s often useful to start testing before a design is

complete. As each part of a design is completed, test-
benches, tests vectors and scripts are prepared and
added to the test suite for regression testing.

Test Automation

Running these tests manually would take too long
and be too error-prone. Scripts are used to automate
testing by compiling the code, running simulations
and summarizing the results.
Many EDA (Electronic Design Automation) tools,

including the FPGAdesign and test software from In-
tel and Xilinx can be controlled by scripts written in a
simple scripting language called tcl (Tool Command
Language, pronounced “tickle”). For example, the
various programs in the Quartus tool suite have em-
bedded tcl interpreters andmany of the configuration
files are actually tcl scripts that set variables.
tcl is a very simple scripting language. Strings are

the only data type. The first word of each line is the
command to be execute. Commands within brack-
ets ([]) are executed and the resulting string is substi-
tuted in place of that command.
Exercise 2: What two tcl commands are executed by the following
tcl script: set x [expr 1 + 1]?

Verilog for Verification

Early integrated circuits were designed and laid out
by hand. As complexity increased it became neces-
sary to simulate these circuits before they were man-
ufactured to be reasonably sure that they would work
properly. The Verilog language (from “verification”
and “logic”) was designed to simplify the simulation
of these digital circuits.
It later turned out that [a subset of] a language de-

signed to model hardware for simulation purposes
was also well-suited as the input language to a logic
synthesizer.
In this section we will cover a few additional fea-

tures of Verilog that are useful for simulation.

Ɪnitial Blocks

Initial blocks can generate clocks and reset signals as
in the following example:

`timescale 1ns/1ns

module ex20 ;

logic reset, clk ;

initial begin
reset = '0;
clk = '0;
#5ns reset = 1;

2

https://en.wikipedia.org/wiki/Tcl

#5ns clk = 1;
#5ns reset = 0;
clk = 0;

forever
#5ns clk = ~clk;

end

initial
#30 $finish ;

endmodule

generating the following clock and reset signals:

0 8 ns 16 ns 24 ns
clk

reset

Most Verilog testbenches run through their test
vectors sequentially using one or more initial pro-
cess(es).
For simple DUTs each test vector sets the inputs

and the code waits for an event indicating the DUT
output is valid or for a fixed delay. The code then
compares the DUT output to the desired result.

Sequential Statements

These statements appear within always or initial
procedural blocks and execute sequentially (one after
the other). They useful when writing testbenches for
simulation (they can also be used for synthesis – but
not in this course).
for, while and do loops are the same as in C. The

break and continue statements from C can also be
used.
The if/else statement syntax is the same as in to

C.
The begin and end keywords group statements

that should be executed together. They serve the
same purpose as braces ({, }) in C (which are used
for concatenation and replication in Verilog).

System Tasks

Functions beginning with $ are system tasks. Some
examples: $display(), similar to C’s printf(),
can be used to print messages during simulation;
$finish and $stop terminate or suspend a simula-
tion.

Simulation Time Control

Delays

Delays are not synthesizable. They are used to model
the behaviour of devices (e.g. propagation delays
through gates) or to create waveforms in testbenches.
In this course we only cover the latter.
The syntax #𝑛 before a sequential statement sus-

pends execution of that block for simulation time 𝑛.
However, this can be changed with the

`timescale directive which takes two values:
the default units and the resolution as shown in
the example above. The default units are used if no
unit is specified in a delay. Resolution specifies the
quantization of time events.

Event Control

The event control expression @(event) before a state-
ment pauses execution until event. The event can be
posedge or negedge before a signal name or just the
signal name. The latter refers to any change in the
signal value. Multiple events can be given separated
by or.
We have used event controls to control execution

of always_ff procedural blocks but they can also be
used in simulations to synchronize execution of pro-
cedural blocks.

wait()

The wait() control pauses execution of the associ-
ated statement until the specified condition is true.
Exercise 3: What’s the difference between wait(x) y='1; and
@(x) y='1;?

Simulation vs Hardware Testing

Programmable logic (FPGA and CPLD) designers
have the option of testing a circuit in addition to sim-
ulating their designs.
Simulations have several advantages:

• simulators give more visibility into the opera-
tion of the design than hardware (even when
using embedded logic analyzers such as Signal-
Tap),

• compilation is much faster than synthesis,

3

• simulations can be automated (e.g. to run
nightly regression tests),

• it’s relatively easy to supply test data (“test vec-
tors”) to an FPGA being simulated and collect
and process the results,

on the other hand:

• a simulation is orders of magnitude slower than
hardware, and so:

• a simulator cannot process input in real time,

• a simulation cannotmodel all details of the final
design (interfaces, power supplies, etc.).

Thus simulations tend to be used early in the design
process followedby testing on thefinal hardware con-
figuration.

4

	Design Verification
	Functional (RTL) versus Timing (Gate-Level) Simulation
	Types of Testbenches
	Stimulus-Only
	Self-Checking

	Generating Test Vectors
	Inputs
	Outputs

	Test Strategies
	Unit Testing
	Test Automation

	Verilog for Verification
	Initial Blocks

	Sequential Statements
	System Tasks

	Simulation Time Control
	Delays
	Event Control
	wait()

	Simulation vs Hardware Testing

