
ELEX 2117 : Digital Techniques 2
2021 Fall Term

Ɪnterfaces

Digital circuits are used to transfer data between devices. This lecture describes the operation and design of some common
interfaces.
After this lecture you should be able to: classify an interface as serial or parallel, synchronous or asynchronous, uni- or bi-
directional and explain the advantages of each; draw the schematic or write the Verilog for a synchronous serial transmitter
or receiver; and extract the data transmitted over an SPI interface from the interface waveforms.

Parallel Ɪnterfaces

We’ve seen how data can be transferred between two
flip-flops by connecting the Q output of one flip-flop
to the D input of another and using a common clock:

D Q D Q

clock

If the two flip-flops are on different devices –
whether two IC packages or two pieces of equipment
– we can connect them this way to transfer data be-
tween them:

D Q D Q

clock

data data

interface

device1 device2

This is the simplest type of interface between two
devices and can transfer any number of bits on the
same clock edge.
An example is the 8-bit parallel printer port that

was used by early personal computers. This inter-
face used the falling edge of a STROBE signal as the
clock and an active-high BUSY signal that indicated
the printer was unable to accept another character.

Serial Ɪnterfaces

The bits of a word can also be transferred over an in-
terface sequentially (serially), typically one bit at a
time, although other bit widths are also possible. Al-
though serial interfaces are more complex, this is of-
ten more than offset by lower costs due to fewer IC
pins, smaller connectors, less PCB area, and lower
cost cables.

Example: SPꞮ

The Serial Peripheral Interface (SPI) is a common se-
rial interface between amicrocontroller (typically the
“master”) and a peripheral IC (the “slave”). Applica-
tions include LCD controllers and SD cards.
The SPI interface has separate data in and data out

lines (labelled MOSI and MISO), a clock signal (SCLK)
and a (typically active-low) slave-select (SS) signal.

MOSI

MISO

SCLK SCLK

SS

MOSI

MISO

SCLK

microcontroller
 (master)

peripherals
 (slaves)

MOSI

MISO

SS

SS0

SS1

The following timing diagram shows the operation
of the bus:

SS

MOSI/MISO

SCLK

The data transfer begins when the master asserts
SS. On the following clock edges1 one bit is trans-
ferred in each direction. Typically, multiples of 8 bits
are transferred, most-significant bit first. SS is de-
asserted when the transfer is done.

1SPI interfaces can be configured so that the data and SS
change on either the rising or falling edge of SCLK.

lec6.tex 1 2021-10-27 08:25

https://en.wikipedia.org/wiki/Parallel_port
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

Exercise 1: The diagram below shows a transfer over an SPꞮ bus.
Howmanybits of data are transferred andwhat is thedecimal value
of this data?

SS*

SCLK

MOSI

An SPI master interface could be implemented as
shown below:

8
MOSI

SCLK

SS

 SPI
 master
 state
machine

valid

ready

 tx
data

0

7

 shift
register

MISO

 rx
data

shift

8

 CPU
interface

The controller is a state machine that sequences
through 16 states, two for each bit (one for SCLK high
and one for SCLK low).
There are two 8-bit parallel data signals (input

and output) and two control signals: ready, set
true when the interface can accept another byte and
valid which is set true when another byte is avail-
able to be transmitted.
Exercise 2: Draw the state transition diagram for the controller, la‑
belling the states with the bit number being transmitted/received.
Ɪnclude an idle state. Ɪn which states are 𝑡SCLK and SS asserted?
Note that SCLK is the clock signal for the interface,

not for the interface’s logic circuits.
A more common implementation would use the

same shift register for transmitting the data; the shift
register would be loaded with the data to be trans-
mitted when validwas asserted and as the MISO bits
were shifted in, the MOSI bits would be shifted out:

MISO D Q D Q
0

1

0

1

load/shift*

D Q
0

1

clock

MOSI

txd

rxd8

8

The slave SPI interface will also be implemented
with a state machine that synchronises to the trans-
mitter usingSS. Note that bothmaster and slavemust

be configured for the same bit order and for whether
MOSI/MISO and SS* change on the rising or falling
edge of SCLK.

Asynchronous Ɪnterfaces

We can simplify the interface further by omitting the
clock. This requires that the clock signal be regen-
erated at the receiver so that the bits can be sampled
and shifted in at the correct time.
The receiver uses an internal clock running at ap-

proximately the same frequency as the transmitter.
But it must periodically re-synchronize its clock with
the transmitter clock to ensure the two clock’s edges
remain aligned. To do this the receiver looks for
changes in the input data signal in-between its clock
edges.
Accurate synchronization thus requires periodic

changes in data signal level, even if the data is con-
stant (e.g. all zero). There are various ways of ensur-
ing this:

• Sending a pair of bits of opposite level in-
between words. An example is the “stop” and
“start” bits used in “RS-232” asynchronous se-
rial interface. In this interface a low level is used
for a 1 and a high level for a 0:

start bit (high)

stop bit (low)

data bits (l.s. to m.s. bit)

1 0 0 1 1 0 1 0

time

• Encoding each bit as either a pair of H-L or L-H
bits. An example is the (“Manchester” coding)
as used by the 10Mbps 10BASE-TEthernet stan-
dard:

0 0 1 1

time

0 1

• Inserting an extra bit when long runs of the
same polarity are detected such as the “bit stuff-
ing” used by USB. In this protocol the bits are
encoded differentially: a zero data bit is trans-
mitted as a change in level, and a “one” bit as

2

https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/Ethernet_over_twisted_pair
https://en.wikipedia.org/wiki/USB_(Communications)#Signaling_(USB_PHY)

no change. A zero (level change) bit is inserted
by the transmitter and removed by the receiver
after 6 consecutive 1’s:

000 1 1 1 1 1 S

"stuffed" bit,
removed by
receiver

1 1 1 1 1 00 1

Most asynchronous serial interfaces, including the
three mentioned above, transmit the data bits least-
significant bit (l.s.b.) first.

Bi‑Directional Ɪnterfaces

We can further reduce the number of conductors re-
quired by using the same ones to transmit data in
both directions. One way is by using tri-state outputs
that are alternately enabled so that only one side of
the interface is configured as an output at any time:

oe oe

transmit/receivetransmit/receive

this is the approach used by USB. Another is by using
open-collector outputs so that multiple devices can
pull the bus low in a “wired-OR” configuration:

o.c. o.c.

Vdd

as is used with I2C:
Often, one device is a master and “polls” the slave.

After the poll the master turns off its driver and the
slave turns on its driver for the duration of the re-
sponse. However, there are also interfaces (e.g. I2C,
see below) wheremultiple devices can contend to be-
come the bus master using an “arbitration” protocol.

Addressable Multipoint Ɪnterfaces

Instead of using enable signals (e.g. SS) to enable spe-
cific devices, each device can be assigned its own ad-
dress. A master can enable a specific device by send-
ing the slave’s address followed by the data. This re-
quires a way to indicate the start and end of the data
(framing). The Inter-IC Communications (I2C) pro-
tocol is an example. This bus allows IC’s to be con-
nected in parallel using only two signals: SDA (data)
and SCL (clock), both of which use open-collector
bidirectional buses. A 7-bit address is transmitted be-
fore the data to enable a specific device. I2C is of-
ten used for low-speed (100 kbps) peripherals such
as temperature sensors and configuration memories.

SDA

SCL

device
 1

device
 2

device
 3

Vdd

Device Descriptors

Some interfaces support retrieval of “descriptors” –
blocks of data that identify a device. For example,
USB peripherals contain a descriptor that identifies
the device type (e.g. a keyboard), the manufacturer
and the model. This allows an operating system to
configure the interface and load the appropriate de-
vice drivers.

High‑Speed Ɪnterfaces

Different electrical standards are needed at higher
speeds or longer distances (>100’s of MHz and >10’s
of cm). Data is often transmitted as the voltage differ-
ence between two signals – “differential signalling”.
The lengths of the two conductors need to be the
same. At high speeds the impedance of the transmit-
ter and receiver need to bematched to the impedance
of the transmission line to avoid reflections.
Lower voltages are often used to reduce power con-

sumption.
Common examples of high-speed differential in-

terfaces used in computers include LVDS (Low Volt-
ageDifferential Signalling) for internal LCDdisplays,

3

https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Differential_signalling
https://en.wikipedia.org/wiki/Low-voltage_differential_signaling

HDMI andDisplayPort for external displays, PCIe for
internal peripherals, and SATA for storage devices.
A SerDes (Serializer/De-Serializer) is the circuit

within an IC that converts between serial and paral-
lel formats. A SerDes often provides clock recovery,
framing and error detection as well.

Example: USB

Universal Serial Bus (USB) is a popular peripheral
interface. It’s an asynchronous bidirectional serial
interface. Earlier versions (“USB 2.0”) of the inter-
face used four conductors: two for a differential, bi-
directional data signal, one for ground, and one for
power (+5 V). Each USB bus has a master that con-
trols the bus by polling (although devices are not con-
nected in parallel) and each device has a descriptor.

4

https://en.wikipedia.org/wiki/SerDes

	Parallel Interfaces
	Serial Interfaces
	Example: SPI

	Asynchronous Interfaces
	Bi-Directional Interfaces
	Addressable Multipoint Interfaces
	Device Descriptors
	High-Speed Interfaces
	Example: USB

