
ELEX 2117 : Digital Techniques 2
2021 Fall Term

Common Circuits

This lecture covers a few additional commonly-used circuits.
After this lecture you should be able to: write Verilog and draw a block diagram for a timer, clock divider, edge detector and
synchronizer.
Updated Feb 2.

Timer and Clock Divider

If we set a register to 𝑁 − 1 and decrement it on ev-
ery clock cycle it will reach zero1 after𝑁 clock cycles.
This happens after a delay of 𝑁/𝑓clk seconds where 𝑓clk
is the clock frequency.
If the counter is re-initialized to 𝑁 − 1 when it

reaches zero, the counter values will repeat period-
ically with frequency of 𝑓clk/𝑁. For example, if𝑁 = 6:

5 4 3 2 1 0 50count:

6/fclk=6Tclk

By taking other actions (e.g. decrementing another
counter or inverting an output) when the counter
reaches specific values (e.g. zero) we can carry out
these actions after a certain delay or at a certain rate.
The following example shows how a counter can

be used to implement a resetable timer and to gener-
ate a periodic enable signal:
module ex38 (input logic clk, reset,

output logic timeout, enable) ;

// timer duration or divided clock period
localparam period = 6 ;

logic timeout_next, enable_next ;
logic [3:0] count, count_next ;

// resetable clock divider
assign count_next
= reset ? period-1 :
count ? count - 1'b1 : period-1 ;

always_ff @(posedge clk) count = count_next ;

// latch a '1 first time count reaches zero
assign timeout_next
= reset ? '0 :
count ? timeout : '1 ;

always_ff @(posedge clk) timeout = timeout_next ;

// periodic signal
assign enable_next
= count_next ? '0 : '1 ;

always_ff @(posedge clk) enable = enable_next ;

endmodule

1Timers traditionally count down to zero because no addi-
tional hardware is required to determine the final value – the sub-
tracter’s borrow bit indicates when the count has reached zero.

and the signals:

0 7 ps 14 ps 21 ps

x 5 4 3 2 1 0 5 4 3 2 1 0 5 4count[3:0]=x
clk=0
enable=x
reset=1
timeout=x

Exercise 1: Draw the block diagram for the Verilog above.
Exercise 2: Ɪs the enable output a square wave? How could you
create a square wave? What would be the period?
Exercise 3: How would the output differ if enable_next was
based on count rather than count_next?
As described below, it is usually a bad idea to use

a periodic signal generated this way as a clock (in the
@(posedge ...) part of a conditional assignment).

Edge Detector

To detect rising edges on a signal that is not a clock,
such as a press of a pushbutton, we can store the pre-
vious value of the signal in a flip-flop and compare
it to the current value. If the previous value was low
and the current value is high then there must have
been a change in level from low to high (i.e. a rising
edge):

sig

sig_nextsynchronizer

clk

sig_rising
D QD Q

The Verilog for this circuit would be:
module ex39
(input logic clk, sig_next,
output logic sig_rising) ;

logic sig ;

always @(posedge clk) sig = sig_next ;

assign sig_rising = ∼sig & sig_next ;

endmodule

and an example of its behaviour is:

lec5.tex 1 2021-10-14 21:10

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us

clk

sig_next

sig_rising

Exercise 4: What is the duration of the sig_rising output?
Exercise 5: Howwould you detect a falling edge?

Synchronizer

Since inputs such as those from pushbuttons are
asynchronous to the clocks used in your circuit, there
is no way to ensure that the setup time requirements
of the various flip-flops in your design will be met.
We can minimize the likelihood of metastable

events2 by passing asynchronous inputs through a
flip-flop called a synchronizer3. The output of this
flip-flopwill be synchronouswith the clockwhich al-
lows us to verify that the setup requirements of the
other flip-flops in our design will be met.
Exercise 6: Draw the schematic of a synchronizer.

Debouncer

Mechanical switches briefly interrupt the connection
when they switch. This “switch bounce” produces
multiple signal edges. Here’s an example:

If a switch is being used in a circuit that is edge-
sensitive, such as the clock for a register, the signal
from the switch must be “debounced” so that there
is only one transition for each switch operation. This
can be done by delaying recognition of changes in the
switch input until the signal has been stable for a time
longer than themaximum duration of the “bounces”.
The required duration depends on the switch, but
typical maximum bounce durations would be a few
milliseconds.
The Verilog for a debouncer circuit might be:

2Meaning that flip-flop outputs do not settle by their specified
𝑡CO.

3Synchronizers typically use two flip-flops in series to make
them more robust.

module ex40
#(parameter N=16'hffff)
(input logic reset, clk, sw_in,
output logic sw) ;

logic [$clog2(N)-1:0] count, count_next ;
logic sw_next ;

// reset count while input matches output
assign count_next
= reset ? N-1 :
sw_in ==? sw ? N-1 : count - 1'b1 ;

always_ff @(posedge clk) count = count_next ;

// change output if not reset in N clock cycles
assign sw_next
= reset ? 0 :
!count ? sw_in : sw ;

always_ff @(posedge clk) sw = sw_next ;

endmodule

and an example of its behaviour when the required
“stable” duration is 4 clock periods is:

0 10 us

+ 3 2 3 2 1 0 3 2 1 0 3 2 1 0 3

clk=0

sw_in=0

count[1:0]=XXX

reset=1

sw=x

Exercise 7: What is the bounce duration in the waveform above?
WhatvalueofNwouldachieveadelayof ten times thiswitha50MHz
clock?

Multiple Clocks

It is usually not a good idea to use signals generated
by logic, for example the different bits of a counter, as
clocks. Among other issues, clock signals generated
by logic circuits will have more uncertainty in their
timing which in turn will reduce the speed at which
your design can operate.
However, power consumption is sometimes more

important than speed and reducing the clock rate re-
duces power consumption because power consump-
tion is linearly related to the clock rate.
Battery powered designs might divide a clock to a

much lower frequency and use that as the sole clock
in the design4.
The use of multiple clocks that are not derived

from the same clock (i.e. generated by different os-
cillators) poses different problems and special tech-
niques are needed to cross “clock domains.”

4Watches and battery-powered timers typically use an oscil-
lator operating at 215 = 32768 Hz.

2

	Timer and Clock Divider
	Edge Detector
	Synchronizer
	Debouncer
	Multiple Clocks

