
ELEX 2117 : Digital Techniques 2
2021 Fall Term

More System Verilog

This lecture describes Verilog types, operators and the evaluation of expressions as well as the most common Verilog state-
ments. More details are available in the System Verilog standard, IEEE Std 1800-2012.
After this lecture you should be able to: predict the size and value of a Verilog expression that uses the signals, constants
and operators described below; and predict the flow of control between the statements described below.
Revision 2 (added example of module instantiation)

More Syntax

ReservedWords

System Verilog has about 250 reserved words that
may not be used as module or signal names. Using
one of these (e.g. buf, time, wait, disable, reg,
table, input,…) will result in a syntax error. An ed-
itor with syntax highlighting is a convenient way to
identify and avoid reserved words.

Types and Values

Verilog’s logic signals can use four values: 0 (false),
1 (true), x (unknown) and z (high impedance) to
model the operation of logic circuits. A z (high-
impedance) value is used for synthesis of tri-state out-
puts. The x (unknown) value is used in simulations
to indicate an unknown value.
The bit and integer types are “two-state” (0 and

1) are used as array indices to describe circuits with
repeated elements.
The notations '0 and '1 are convenient abbrevia-

tions for a literal constant that is all-zeros or all-ones.

Signedness

Signals can be declaredsigned. Based literals are un-
signed unless s is used with the base (e.g. 4'shf).
Negative values are in twos-complement format.
Signedness does not affect the values of the bits,

only how some operators treat the sign bit.

Width and Sign of Expressions

Figure 11 shows how the size of an expression de-
pends on its operands (signals and literals and other

1Tables are from the IEEE SystemVerilog Standard, IEEE Std
1800-2012.

expressions). The notation 𝐿(⋅) refers to the length
(width) of an operand.
Values are left-padded or left-truncated as neces-

sary. Padding replicates the sign bit only for signed
values.
The result of an expression is unsigned unless all

the operands are signed.

Arrays

Variables may have (multiple) “packed” and “un-
packed” dimensions.

Packed dimensions appear before the signal name.
These bits are stored contiguously (“packed”) and the
packed item can be treated as a scalar – a single num-
ber – in expressions. Packed dimensions typically
model a word or bit fields within a word. For ex-
ample, logic [3:0][7:0] ax ; would describe a
32-bit word composed of 4 bytes of 8 bits and ax[3]
would be the most-significant byte and ax[0][7:4]
would be the most-significant nybble of the least-
significant byte.

Unpacked dimensions appear after the signal
name. These bits need not be stored contiguously.
Unpacked arrays model memories. In these only
one element can be accessed at a time. For example:
logic [7:0] rom [32] ; would model a 32-byte
memory.
In array references, the unpacked dimension(s) are

specified first, followed by the packed dimensions (if
any). For example, rom[31][0] would be the least-
significant bit of the last word in the rom above.

Array Literals

Array literals (constants) can be defined by grouping
the individual elements within '{...}. The quote

lec4.tex 1 2021-10-20 00:37



Figure 1: Size of Expressions.

distinguishes array literal syntax from the syntacti-
cally similar concatenation operator (below).

Examples

The examples below illustrate the rules described
above.

module ex12 ;
initial begin

logic [3:0] x ;
logic signed [15:0] y ;
logic [3:0] [7:0] z [15:0] ;

// what are the values of x?
x = 4'b01xz ;
x = -1 + 0 ;
y = -1 + 4'shf ;
x = y ;

// what are the values of z?
z[0] = '1 ;
z[0] = {4{4'b1}} ;
z[0][0][7] = 1 ;
z[15:0] = '{16{z[0]}} ;

end
endmodule

Exercise 1: What are the packed and unpacked dimensions of each

declaration?
Exercise 2: What are the signedness, size and value of each con‑
stant and each expression above?

Operators

Figure 2 below lists the Verilog operators and Figure
3 their precedence. Operators that differ from those
in C and that are widely supported for synthesis are
described below.

Arithmetic vs Logical Shift Left shift always
zero-fills on the right. Arithmetic right shifts
(>>>) replicate the sign bit if the result is signed.
Logical right shifts (>>) always zero-fill.

Logical Reduction Operators These unary (one
operand) operators apply a logical operation to
the bits of the operand. For example, to test if
any bit is set we can apply the or-reduction op-
erator.

Conditional Operator The result when the condi-
tional expression contains x or z is not what you

2



Figure 2: Verilog operators.

might expect (the rules are complex).

Equality Equality comparison (==, !=) returns x if
either operand contains x or z.

Wildcard equality (==?, !=?) excludes bits that
are x or z in the right operand from the compar-

ison. The result is always 0 or 1.

Four-state comparison (===, !==) compares the
two operands for an exact match, including x
and z.

Concatenation Bits can be concatenated by sepa-

3



Figure 3: Operator Precedence.

rating expressions with commas and surround-
ing them with braces ({}).
Concatenations of variables can be used on the
left hand side of an assignment.
Arrays can also be spliced back together with
the concatenation operator ({,}). For example,
we can swap the bytes of a 16-bit word b using:
{b[7:0],b[15:8]}.

Replication The syntax is similar to concatenation
but uses two pairs of nested braces and repeti-
tion value.

Array Slices The array subscript operator can be
used to extract contiguous portions (slices) of an
array. The bit order cannot be reversed.
Part of a packed array (a “slice”) can be refer-
enced with a range of indices as shown above.

Cast Although not an operator, a cast (') can be
used to change the type, size or signedness of an
expression.

Examples

module ex13 ;
initial begin

logic [15:0] x ;
logic signed [15:0] y ;

x = 16'hfff0 ; // x=65520
y = x >>> 1 ; // y=0x7ff8
y = signed'(x) >>> 1 ; // y=0xfff8
y = |y ; // y=1

x = 8'h4x ; // x=X
y = x == 8'h4x ; // y=X
y = x[6:3] === 7'b100x ; // y=1
y = x ==? 8'h4x ; // y=1
y = {x[7:4],x[6]} ; // y=0x0009

end
endmodule

4



Modules

Small, simple circuits are easier to design and verify
than large ones. For this reason it’s good practice to
divide designs into smaller parts2. In some cases a
large part can be constructed frommultiple copies of
the same part. And if the partitioning is done care-
fully, it’s often possible to re-use the parts in other
designs. Many designs incorporate complex parts de-
signed by others (e.g. processors, memories and in-
terfaces), called design IP (“Intellectual Property”).
In Verilog each part is a module. Modules describe

a hardware design that can be “instantiated” (dupli-
cated and inserted into) another module.
The module’s interfaces are defined by a header

describing ports and parameters. Ports are in, out
or inout (bidirectional) signals while parameters are
values that can customize each instance of a module.
The module’s body contains additional signal decla-
rations and parallel (concurrently executing) state-
ments between module and endmodule. These de-
fine the structure or behaviour of the module.
Here’s an example of a module named bit_store

that defines an nb-bit register:
module bit_store
#(parameter nb=1)
(
input logic [nb-1:0] d,
output logic [nb-1:0] q,
input logic clock
) ;

logic [nb-1:0] q_next ;

assign q_next = d ;

always_ff @(posedge clock) q = q_next ;

endmodule

The parameter nb has a default value of 1 which
is used if a value is not given when the module is in-
stantiated. There are two input ports (named d and
clock) and one output port (named q).
To instantiate one module into another it’s neces-

sary to provide the name of the module, an instance
name (to identify individual instances of the same
module), and the correspondence between signals in
the instantiating module and the ports in the instan-
tiated module:

2When should you stop dividing a design into smaller parts?
A good rule of thumb is to make sure each part can be described
on a single page.

instantiating module

instantiated module

signal
port

id

name

For example, an 8-bit 3-stage shift register:

sr3bytes

newest oldest
bit_store

d q

clock

b0

bit_store

d q

clock

b1

bit_store

d q

clock

b2clock

a b

could be defined as follows:
module sr3bytes

(
input logic [7:0] newest,
output logic [7:0] oldest,
input logic clock
) ;

localparam nb = 8 ;

logic [7:0] a, b ;

// matching by order
bit_store #(nb) b0 (newest, a, clock) ;

// matching by name (order does not matter)
bit_store #(.nb(nb)) b1 (.q(b), .clock, .d(a)) ;

// wildcards for names that match
bit_store #(.nb(nb)) b2 (.d(b), .q(oldest), .*) ;

endmodule

When one module is instantiated in another, a sig-
nal can be connected to module port by:

• port order (signal),

• port name and explicit signal name
(.port(signal)),

• port name only – connecting to the matching
signal name (.port),

• wildcard that matches all remaining matching
port and signal names (.*).

The signal name can be an expressions (e.g.
word[15:8]) instead of a signal. Matching of values
to parameters can be done by order (value) or
explicitly, .parameter(value).
The synthesis result is as expected:

5



clock

bit_store:b2

clock

d[7..0]

q[7..0]

bit_store:b0

clock

d[7..0]

q[7..0]

bit_store:b1

clock

d[7..0]

q[7..0]

newest[7..0]

oldest[7..0]

Parallel Statements

A module can contain any number of the follow-
ing parallel statements, all of which execute concur-
rently.

always Procedural Blocks

always blocks execute the following statement in an
infinite loop. Execution of the next statement is often
controlled by one of the following:

#number delays number before each execution.
This is not synthesizable but is useful for sim-
ulation.

@(expression) waits until the value of the expres-
sion (the “sensitivity list”) changes. This can
be used to model combinational, latched or flip-
flop logic.

The type of logic generated by the always block de-
pends on the the sensitivity list and which variables
are assigned to within the block.
If for some conditions variables are not assigned

to within the block then the language semantics re-
quire that memory be generated so that the previous
value is retained. This memory can be edge-triggered
(when the sensitivity list uses posedge or negedge)
or a latch (otherwise). On the other hand, if all vari-
ables in the sensitivity list are updated each time the
block executes then combinational logic is generated.
A commonmistake is to omit signals from the sen-

sitivity list or not assign to a variable. This results in
unintended latched logic.
To avoid this, System Verilog has three vari-

ants of the always procedural block: always_ff,
always_comb and always_latch that document the
designer’s intent. A warning or error is generated if

the sensitivity list or assignments within the block
would not result in the intended type of logic.
An always_comb does not need a sensitivity list –

the implied sensitivity list includes all signals that are
‘read’ within the block.
An always_ff block requires a sensitivity list that

includes posedge or negedge qualifiers on each sig-
nal.

6


	More Syntax
	Reserved Words
	Types and Values 
	Signedness 
	Width and Sign of Expressions 

	Arrays 
	Array Literals 

	Examples 
	Operators 
	Examples 
	Modules 
	Parallel Statements 
	always Procedural Blocks


