
ELEX 2117 : Digital Techniques 2
2021 Fall Term

State Machines

This lecture defines state machines and describes how to document and implement them using Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, write a synthesizable Verilog description of it and convert between these three
descriptions.

Introduction

The state of a logic circuit is the values of its registers.
A state machine is a description of how the state of a
circuit changes in response to inputs.
The schematic of a state machine is a register

whose next value is selected by inputs, which often
include the current state:

D Q
current
state

 inputs and
current state

 possible
 state
 values

clock

Although any logic circuit with registers could be
described as a single state machine, we typically use
the term when the number of possible states is rela-
tively small – a handfull or two.
Statemachine descriptions arewidely used. Exam-

ples of statemachine applications include controllers
for devices such as traffic lights or elevators; control-
ling the logic circuits in a CPU or GPU, and digital
interfaces.
We will learn to describe state machines using ta-

bles, state transition diagrams and Verilog.

State Machine Descriptions

State machine are typically documented as a state-
transition table or a state-transition diagram.
A state transition table is a truth table with

columns for the current state, the input value, and
the next state.
The example below is for a motor controller with

two pushbutton inputs: one to start the motor and
one to stop it. A tabular description might look as
follows:

current

state
start stop

next

state

off 0 0 off

on 0 0 on

X 1 0 on

X X 1 off

A state machine with a small number of states can
be described using a state transition (or “bubble”) di-
agram. Each possible state is represented by a cir-
cle labelled with the state. Lines with arrows repre-
sent the state transitions. The transitions are labelled
with the input required for that transition. For the
state transition table above the state transition dia-
gram would be:

off on

start == 1 && stop == 0

stop == 1

State transitions happen at the rising edge of the
clock.
State transition diagrams often omit input condi-

tions that don’t result in a change of state (e.g. from
0 to 0 or 1 to 1 above).

State Machine Outputs

A state machine is often used to generate signals that
depend on the state.
For aMoore state machine, described above, these

signals are only a function of the current state. For a
Mealy statemachine these outputs are also a function
of the current inputs:

lec3.tex 1 2021-09-23 23:33

inputs

D Q outputs

clock

Mealy only

combinational logic

registered outputs

For aMoore state machine the output is a function
of the state, so the number of states must be equal to
or greater than the number of different outputs.
These outputs can be documented in the state tran-

sition table or diagram. For Moore state machines
one output value is specified per state (one per bub-
ble). For Mealy state machines one output value is
specified per combination of state and input (one on
each line between bubbles).

Implementation

State Encodings

𝑘 flip-flops can be used to represent an arbitrary 2𝑘
states. For example, 3 flip-flops could encode up to 8
states.
FPGAor CPLDdesigns often use “one-hot” encod-

ings where one flip-flop is used for each state and
only one flip-flop at a time may set to 1. This en-
coding requires more flip-flops but can simplify the
combinational logic.
For the above example the two states could be en-

coded as:

state
binary

encoding

one-hot

encoding

off 0 10

on 1 01

Exercise 1: If we used 8-bits of state information, how many states

could be represented? What if we used 8 bits of state but used a “one-

hot” encoding?

In many cases we can choose state encodings so
that bits of the state are also the outputs. Such “regis-
tered” outputs do not have glitches1. This is desirable
for signals that go off-chip.

1Glitches are short-duration changes resulting from different
propagation delays through the combinational logic at the out-
put.

State Transition and Output Logic

The state transitions are implemented as combina-
tional logic that computes the value of the next state
based on the current state and the input. In Ver-
ilog this can be done using assign (or always_comb)
statements.
Outputs that are not represented by state variables

must be computed by combinational logic from the
state and, in the case of a Mealy state machine, the
inputs.
A practical circuit also needs a clock signal and a

reset input. The FSM will change state on every ris-
ing edge of the clock and revert to a starting state
when the reset input is asserted. Often the reset is
synchronous – it is an just another input that causes
the circuit to transition unconditionally to a desired
initial state on the next rising edge of the clock.

Multiple State Machines

Most systems contain multiple state machines inter-
acting with each other. Each one may have differ-
ent state transition rules and their state transition di-
agrams can be drawn separately.
For example, a multi-digit counter may be de-

signed as a combination of individual single-digit
counters each designed as a state machine with a
terminal-count output and a count-enable input. A
one-digit BCD counter might respond to the transi-
tion from 9 to 0 of the next-lower-order digit.
Another example would be traffic light. The tran-

sitions between light states would be controlled by a
timer which is a state machine. The timer might be
reset on a transition between traffic light states.

Examples

Resetable Counter

The state transition table, the System Verilog model
and simulationwaveforms for a 2-bit counter with re-
set and enable inputs are shown below. In this exam-
ple the state value is the counter value.

2

0 10 us 20 us 30 us 40 us 50 us 60 us 70 us 80 us

0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 +
+ 100010 001100 010100 100001 100010 001100

clk
count[4:0]
lights[5:0]

Figure 1: Simulation of traffic light controller.

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us

1234

XXX 128 0 64 32 48 40 36 34 35
XXX 128 64 32 16 8 4 2 1 0

n[15:0]
reset
clk
sqrt[7:0]
delta[7:0]
done

Figure 2: Simulation of the calculation of square root of 1234.

count input next count

[1] [0] reset enable [1] [0]

X X 1 X 0 0

a b 0 0 a b

0 0 0 1 0 1

0 1 0 1 1 0

1 0 0 1 1 1

1 1 0 1 0 0

// 2−bit counter with enable and synchronous reset

module ex22 (output logic [1:0] count,
input logic enable, reset, clk) ;

logic [1:0] count_next ;

// next−state logic
assign count_next
= reset ? 2'b00 :
!enable ? count :
count == 2'b00 ? 2'b01 :
count == 2'b01 ? 2'b10 :
count == 2'b10 ? 2'b11 : 2'b00 ;

// register
always_ff@(posedge clk) count = count_next ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us

xx 00 01 10 11

clk

count[1:0]

enable

reset

Exercise 2: What happens if both reset and enable are asserted?

Exercise 3: Draw the state transition diagram.

Sequence Detector

This state machine detects a sequence of values such
as the correct sequence of numbers for a digital lock

or the sequence of sensor inputswhich candetermine
the direction in which a shaft is turning.
The state is the most recent four inputs. Combina-

tional logic asserts an unlock output when the more
recent four inputs match the passcode (1,2,3,4 in this
example).
In this example the unlock output is registered

andwill be high for one clock periodwhen the correct
sequence is recognized.
// digit−sequence detector

typedef enum logic { locked, unlocked } lockstate ;

module ex24 (output lockstate unlock,
input logic [3:0] digit,
input logic clk) ;

logic [3:0][3:0] digits, digits_next ;
lockstate unlock_next ;

// next−state logic
assign digits_next = digits << 4 | digit ;

assign unlock_next
= digits_next == { 4'd1, 4'd2, 4'd3, 4'd4 } ?
unlocked : locked ;

// registers
always_ff@(posedge clk) digits = digits_next ;
always_ff@(posedge clk) unlock = unlock_next ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

x 5 1 2 3 4 2
xxxx xxx5 xx51 x512 5123 1234 2342

clk
digit[3:0]
digits[15:0]
unlock

Traffic Lights

This is a controller for a traffic light at an intersection:

3

R

Y

G

R

Y GR

The controller combines two state machines: one
to sequence the traffic lights and one for timing. The
states are encoded as 6-bit values with the on/off val-
ues of the (Red, Green, Yellow) lights in each direc-
tion:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

6’b100_001 6’b100_010 6’b001_100 6’b100_001

A package is used to define an enumerated type to
label the four states (rg, ry, gr, and gy) according
to the signal colors in the two directions. A package
allows us to use the same definitions in other files, for
example, in a testbench.
package ex28pkg ;

typedef enum logic [5:0]
// RYG RYG

{ rg=6'b100_001, ry=6'b100_010,
gr=6'b001_100, yr=6'b010_100 }

lightstate ;

endpackage

Delays are implemented by decrementing a counter
on each clock edge. When the counter reaches zero
the state changes and the counter is loaded with the
duration of the next state.
The state transition diagram showing the duration of
each state is:

rg

gr

ryyr

30s

30s 5s

5s

The simulation outputs are shown in Figure 1.
The module definition is given below. The state

and counter values are given initial values. On some
technologies, these are the values when a device is
powered up.
// traffic light controller

import ex28pkg::* ;

module ex26 (output lightstate lights,
input logic clk) ;

lightstate state=rg, state_next ;
logic [4:0] count=0, count_next ;

// next traffic light state
assign state_next
= count ? state :
state == rg ? ry :
state == ry ? gr :
state == gr ? yr : rg ;

// state durations
assign count_next
= count ? count-1 :
state == rg || state == gr ? 4 : 29 ;

// registers
always_ff@(posedge clk) count = count_next ;
always_ff@(posedge clk) state = state_next ;

// output
assign lights = state ;

endmodule

Exercise 4:Write the state transition table for each statemachine.

Square Root

This example computes the square root of an input
number by bisection. The search interval (named
delta below) could be considered to be the state vari-
able. On reset this interval is set to half of the maxi-
mum possible value and it is divided by 2 at each it-
eration. The algorithm terminates when this interval
is reduced to zero
module ex41
(
input logic [15:0] n,
input logic reset, clk,
output logic [7:0] sqrt,
output logic done
) ;

logic [7:0] sqrt_next, delta, delta_next ;

assign sqrt_next
= reset ? 8'd128 :
{8'b0,sqrt} * sqrt < n ?
sqrt + delta : sqrt - delta ;

assign delta_next
= reset ? 8'd128 : delta/2 ;

assign done = !delta ;

always @(posedge clk) sqrt = sqrt_next ;
always @(posedge clk) delta = delta_next ;

4

endmodule

Figure 2 shows the calculation of the square root
of 1234.
Exercise 5: What is the size of the expression sqrt*sqrt? Of

{8'b0,sqrt}*sqrt?

Exercise 6: Draw the state transition diagram (useΔ = 0 andΔ ≠ 0
as the states).

5

	Introduction
	State Machine Descriptions
	State Machine Outputs
	Implementation
	State Encodings
	State Transition and Output Logic

	Multiple State Machines
	Square Root

