State Machines
Exercise 1: If we used 8-bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

Exercise 2: What happens if both reset and enable are asserted?
reset because it is tested first

Exercise 3: Draw the state transition diagram.

T : reset $=20$ \& enable $==1$

$$
\begin{aligned}
& T: \text { reset }=20 \quad \& \& \text { end }==0 \quad \& \& \text { enable }==0 \\
& N: \text { est }==0
\end{aligned}
$$

Exercise 4: Write the state transition table for each state machine.

$\left.\begin{array}{c|c|c}\text { count } & \text { state } & \text { next } \\ \text { count }\end{array}\right]$

Exercise 5: What is the size of the expression sqrt*sqrt? Of $\left\{8^{\prime}\right.$ bo, sqrt $\} *$ sqrt?
from Table $11-21$,

$$
\begin{aligned}
& \max (L(s q r t), h(s q r t)) \\
& =\max (8, \delta)=8 \\
& \max \left(h\left(\left\{8^{\prime} b 0, s q r t\right\}\right), L(s q v t)\right) \\
& =\max (8+8,8)=16
\end{aligned}
$$

Exercise 6: Draw the state transition diagram (use $\Delta=0$ and $\Delta \neq 0$
as the states).

