
ELEX 2117 : Digital Techniques 2
2021 Fall Term

Introduc on to Digital Design with Verilog HDL

This is a brief introduction to digital circuit design using the SystemVerilogHardwareDescription Language (VerilogHDL).
After this lecture you should be able to:

• define a module with single- and multi-bit logic inputs and outputs;
• write expressions using logic signals and operators;
• write Verilog numeric literals in binary, decimal and hexadecimal bases.
• use assign statements to generate combinational logic;

Introduc on

Most of the features of modern electronics are de-
fined in software. But for certain tasks software can
be too slow or a processor can be too expensive or can
consume too much power. In these cases we need
to design specialized digital circuits. This course
teaches how to do this.
Today, digital circuit designers use Hardware

Description Languages (HDLs) instead of drawing
schematics. In this course we will use System Ver-
ilog, the modern version of the Verilog HDL, rather
than the other popular HDL, VHDL.

Combina onal Logic

Let’s start with a simple example – a circuit called an
ex1 that has one output (y) that is the logical AND of
two input signals (a and b). The file ex1.sv contains
the following Verilog description:
// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Some observations on Verilog syntax:

• Everything following // on a line is a comment
and is ignored.

• Module and signal names can contain letters,
digits, underscores (_) and dollar signs ($). The
first character of an identifier must be a letter or
an underscore. They cannot be the same as cer-
tain reserved words (e.g. module).

• Verilog is case-sensitive: a and A would be dif-
ferent signals.

• Statements can be split across any number of
lines. A semicolon ends each statement.

Capitalisation and indentation styles vary. In this
course you will need to follow the coding style guide
available on the course web site.
Themodule definition begins by defining the input

and output signals for the device being designed.
The body of themodule contains one ormore state-

ments, each of which operates at the same time – con-
currently. This is the key difference between HDLs
and programming languages – HDLs allows us to de-
fine concurrent behaviour.
The single statement in this example is a signal as-

signment that assigns the value of an expression to
the output signal y. Expressions involving logic sig-
nals canuse the logical operators~ (NOT),& (AND),^
(exclusive-OR), and | (OR). Parentheses can be used
to define the order of evaluation.
From this Verilog description a program called a

logic synthesizer (e.g. Intel’s Quartus) can generate a
circuit that has the required functionality. In this case
it’s not too surprising that the result is the following
circuit:

a
y

b
y

If you’re familiar with the C programming lan-
guage you’ll note that Verilog uses the same syntax
for its bitwise operators.
Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was

assign y = (a ^ b) | c ;?

lec1.tex 1 2021-09-15 03:39

Buses and Packed Arrays

A group of logic signals that is treated together is
called a ‘bus’. A bus is described in Verilog using a
“packed array”. A packed array can also be treated as
a binary number.
The declaration logic [3:0] a; specifies a

packed array named awith a ‘width’ of four bits. The
bits are numbered from 3 to 0. a[3] is the leftmost
(most significant) bit and a[0] is be the rightmost
(least significant) bit.
Exercise 3: If the signal i is declared as logic [2:0] i;, what is

the ‘width’ of i? If i has the value 6 (decimal), what is the value of

i[2]? Of i[0]?

Verilog has many operators for working with
packed arrays: arithmetic (+, -, *, /, %), com-
parison (==, <, !=, etc. equal, less-than and not-
equal) and shift operators (<<, >>). These operators
are similar to those in the C programming language.
We will cover them in more detail later.
Verilog uses brackets ([]) in expressions for in-

dexing and “slicing” – extracting parts of a packed
array. Braces ({}) are used to combine signals
into multi-bit values. For example, the expression
{a[0],a[1],a[2],a[3]} would be a bit-reversed
version of the packed array defined above. The or-
der of the indices in a slice must be the same as in its
declaration.
Exercise 4: Use slicing and concatenation to assign y the value of the

byte xwith its nybbles swapped.

C syntax is also used for comments – // for single-
line and /* ... */ for multi-line.

Condi onal Operator

Verilog’s conditional operator is a concise syntax for
describing a two-way multiplexer. The operator con-
sists of three parts: the condition, the true value and
false value. The result of the operator is the true value
if the condition is non-zero, or the false value other-
wise. For example:

assign y = sel ? a : b ⇔
sel

a

b
y

1

0

sets y to awhen sel is non-zero and sets y to bwhen-
ever sel is zero.
Exercise 5:What is the valueof the expression3 ? 10 : 20? Of the

expression x ? 1 : 0 if x has the value 0? If x has the value -1?

The following example implements a multiplexer
that selects from one of two 4-bit inputs:
module ex36 (input logic sel,

input logic [3:0] a, b,
output logic [3:0] y) ;

assign y = sel ? a : b ;

endmodule

which results in:

sel

b[3..0]
y[3..0]

y~[3..0]
0

1
a[3..0]

Multiple conditional operators can be used to con-
cisely describe trees of multiplexers. In the absence
of parentheses a sequence of ternary operators is eval-
uated from left to right.
Exercise 6: Draw the schematic corresponding to: y = a ? (b ?

s1 : s2) : (c ? s3 : s4)

Exercise 7: Write a Verilog description of a 4-bit 3-to-1 multiplexer

controlled by a 2-bit sel input? Label the inputs a (for sel=00)

through c (for sel=10).

Numeric Literals

“Literals” (numeric constants) are written as a se-
quence of up to three parts: the number of bits, the
base denotedwith a quote1 followed by a letter ('b for
binary, 'h for hex or 'd for decimal), and the value.
The default width is 32 and the default base is deci-
mal. Underscores (_) may be used within the value
to improve readability.
Exercise 8: What are the sizes and values, in decimal, of the following:

4’b1001, 5’d3, 6’h0_a, 3?

Implementa on

How is Verilog used to implement logic circuits with
a programmable logic device (PLD) such as a CPLD
(Complex Programmable Logic Device) or FPGA
(Field Programmable Gate Array)?

1Often pronounced “tick”.

2

netlist

Verilog

map

place&route

assemble

programming file

.sdc

.qsf

JTAG
 port

PLD

program

Quartus
synthesis

delays

The design is first mapped by logic synthesis soft-
ware (e.g. Quartus) to elementary logic functions
such as gates and flip-flops. The result is a netlist –
a list of logic functions and how they’re connected.
A “Place and Route” (P&R) step then assigns each

of the logic functions to one of the logic elements in
the PLD. This requires additional information such as
the part and the pin assignments. These are supplied
in the .qsf (Quartus settings) file. For example, your
.qsf file might contain the lines:

set_global_assignment -name DEVICE EPM240T100C5
set_location_assignment PIN_2 -to clk_in

...
set_location_assignment PIN_44 -to led[3]

Timing constraints such as clock frequencies are de-
fined in a .sdc (Synopsis Design Constraint) file. For
example, the following statement requires that the
design operate correctly if the signal CLOCK_50 has
a 50 MHz (20 ns period) clock:

create_clock -period 20ns CLOCK_50

Finally, the placed and routed design is “assem-
bled” to a file that can program the device, typically
over a dedicated “JTAG”programming/diagnostic in-
terface on the PLD.

3

Ed

	Introduction
	Combinational Logic
	Buses and Packed Arrays
	Conditional Operator
	Numeric Literals
	Implementation

