
ELEX 2117 : Digital Techniques 2
2021 Fall Term

Asynchronous Serial Ɪnterface

Ɪntroduction

An Asynchronous Serial Interface is a simple low-
speed serial communication interface. Today it’s
mostly used by embedded devices. The simplest ver-
sion uses a single data line in each direction (Trans-
mit Data and Receive Data) and a ground pin. The
RS-232 standard specifies levels of at least ±5 volts
but embedded systems often use logic-level signals.
In this lab you will design and implement the

transmitter portion of a UART (Universal Asyn-
chronous Transmitter-Receiver) that transmits an 8-
bit binary value serially.
A supplied control module will test your UART

module by using it to transmit a nine-character text
string that is a printable version of your BCIT ID en-
coded using the ASCII encoding1.
You will use the Analog Discovery 2 (AD2) oscillo-

scope, logic analyzer and “UART” protocol analyzer
functions to display the waveforms and data.
Youmust implement the transmitter as a state ma-

chine. Quartus will generate a state transition dia-
gram and a state transition table from your HDL de-
scription.
The supplied lab6.qar Quartus project archive

contains the required code except for the uartmod-
ule, which you must write.

Specifications

The supplied lab6 module has a 50 MHz clk clock
input, an active-low reset_n_in input and one-bit
txd transmit data output .
Your uart module will have a 50 MHz clk50

input, a debounced reset signal named reset_n,
a nextchr signal that is asserted when the UART
should start sending the 8-bit character chr and a
nextbit signal to indicate when the next bit of the
character should start.

1An encoding is a mapping of characters (“glyphs”) to num-
bers. Unicode is the most widely used. ASCII, American Code
for Information Interchange, is a subset of Unicode that covers
only English-language characters and numbers.

clk50

reset_n_in

clk

reset_n

nextbit
nextchr
chr[7:0]

txd

uart

txd

lab6

debounce txd2

The following diagram shows the timing relation-
ship of the signals at the input to the uartmodule:

nextbit

nextchr

12 bit periods

reset_n

clk50

chr

Your uart module must implement a state ma-
chine that operates as follows:

• If reset_n is asserted the uart is reset; any
transmission in progress is halted.

• If nextchr is asserted, transmission of a new
character is started; chr contains the value of
this character. You do not need to store it; the
value will remain valid until the next character.

• If nextbit is asserted, the next bit of the char-
acter should be output.

State changes must only take place on the rising
edge of clk50.
Eight bits per character must be transmitted in or-

der from least-significant bit to most-significant bit.
A “1” bit should be transmitted as a high logic level
and a “0” bit as a low logic level. An extra “0” (“start
bit”) must be transmitted before the data bits and an
extra “1” (“stop bit”) must be transmitted after the
data bits. txd should be highwhen the statemachine
is in the idle state and no data is being transmitted.
The following logic analyzer screen capture shows

the txdwaveform when the character “A” (8'h41) is
transmitted:

lab6.tex 1 2021-10-23 15:04

https://en.wikipedia.org/wiki/Asynchronous_serial_communication
https://en.wikipedia.org/wiki/ASCII


0 1 ms 2 ms 3 ms 4 ms 5 ms

41 30 31 32

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3 4 5

char[7:0]

clk50

nextbit

nextchr

reset_n

state

state_next

txd

Figure 1: UART Simulation Waveforms.
uart:u0

clk

nextbit

nextchr

reset_n

char[7..0] txd

state

clk

nextbit

nextchr

reset_n

b0

b1

b2

b3

b4

b5

b6

idle

startbit

stopbit

txd~0

txd~1
0

1

txd~2
0

1

txd~3
0

1

txd~4
0

1

txd~5
0

1

txd~6
0

1

txd~7
0

1

txd~8
0

11'h0

txd~9
0

11'h1
6

7 5

4

3

2

1
0

Figure 2: RTL Schematic of UART Module.

Figure 3: Sample State Transition Diagram.

Figure 1 shows the simulationwaveforms at the in-
put and output of the UART module. The 50 MHz
clockwaveform is not visible since it is somuch faster
than the data. The nextchr and nextbit signals
have a duration of one clk50 period and are aligned.
Quartus must recognize your design as a state ma-

chine. This requires that you follow specific require-
ments listed in the Quartus Recommended HDL
Coding Styles. In particular:

• use an enumerated type of unsigned integer type
to define the states (example below),

• do not use the state variable as an output

• keep other operations in the module (e.g. com-
putations) separate from the statemachine logic

• include a synchronous reset

Quartus can recognize state machines imple-
mented using only assign and always_ff concur-
rent statements.
An example of a declaration of a suitable enumer-

ated type would be:
typedef enum int unsigned
{ idle, startbit, b0, b1, ..., stopbit } state_t ;

state_t state, state_next ;

2

https://www.intel.com/content/www/us/en/programmable/documentation/ntt1529445293791.html#mwh1409959613013
https://www.intel.com/content/www/us/en/programmable/documentation/ntt1529445293791.html#mwh1409959613013


The Quartus RTL netlist viewer will be able to
display the state machine as a separate yellow logic
block as shown in Figure 2 if you follow the coding
guidelines above.
Double-clicking the state machine block will dis-

play a state transition diagram similar to that in Fig-
ure 3 along with tables showing the state transition
conditions and state encodings2:

You must modify the lab6.sv file to substitute
your BCIT ID for the A00123456 value.
The lab6.sv file contains a testbench named

lab6_tb.sv that you can use to simulate your de-
sign.

FPGA Ɪ/O

The default pin assignments for this lab use the on-
board pushbutton KEY4 to trigger the transmission of
a string and output the serial data on FPGA pins 53
(txd) and 55 (txd2).
The photo below shows how the AD2 connects to

the FPGApins: the analog negative reference and the
digital ground (orange/white and black leads respec-
tively) connect to two ground pins (labelled GND), the
AD2 ’scope’s channel 1 (orange) connects to pin 53
and the digital input DI0 (pink) connects to pin 55:

2Note that in this caseQuartus has chosen a one-hot encoding
in which the idle (reset) state is active-low.

Use of AD2

Youwill use the AD2 oscilloscope, logic analyzer and
protocol windows to verify and troubleshoot the op-
eration of your design.

Oscilloscope. A ’scope channel can be connected to
the txd output to verify the voltage levels and check
for signal integrity issues such as noise, glitches or
ringing. You can trigger on the falling edge of txd to
capture the start of the transmitted waveform.

Logic Analyzer. The logic analyzer can be used
to display digital signals. It can display multi-bit
bus values (not relevant in this case) and multi-bit-
duration values (as for the UART configuration used
here). Figure 4 shows the transmitted serial data us-
ing a configuration called “UART.”
The trigger (T column) has been set to the falling

edge of the Data signal and the Protocol options have
been set for 9600 bits per second, 8 bits per character
and normal polarity (low for a “1” bit).

Protocol Analyzer. The protocol analyzer can be
used to decode even more complex protocols such as
those including device addresses and variable-length
fields (neither used by asynchronous interfaces). The
following screen captures show the “UART” decod-
ing. Figure 5 shows an example of the protocol an-
alyzer display showing the received characters (the
reset button was pressed twice).

Note: There seems to be a conflict between the
AD2 and the USB-Blaster drivers. You may need
to disconnect the AD2 to program the FPGA.

3

https://forum.digilentinc.com/topic/8797-analog-discovery-2-and-altera-usb-blaster-conflict/


Figure 4: ’Scope and Logic Analyzer Display.

Figure 5: Protocol Analyzer Display.

Submission

To get credit for completing this lab, submit a PDF
document containing the following to the Assign-
ment folder for this lab on the course website:

1. A listing of your uart.sv System Verilog file.

2. The RTL schematic (Tools > RTL Netlist) similar
to Figure 2.

3. A screen capture of the state transition diagram
similar to Figure 3.

4. A screen capture of your compilation report sim-
ilar to:

5. Screen captures of the AD2 logic analyzer and
protocol analyzer similar to those in Figures 4
and 5 demonstrating the operation of your in-
terface. They should both show your full BCIT
ID.

4


	Introduction
	Specifications
	FPGA I/O 
	Use of AD2
	Submission 

