Modulo-n Counters

Introduction

Counters whose values "wrap around" back to zero when they reach the value n are called modulo- n counters.

The most common example is a modulo-10 counter that counts from 0 up to 9 and then "wraps around" back to 0 . We can build a multi-digit binarycoded decimal (BCD) counter using one modulo-10 counter for each digit.

In this lab you will design a single-digit modulo-n counter and instantiate four instances of your module to create a four-digit counter whose digits will display on the multiplexed LED display used in previous labs. The value of n will depend on your student ID.

Modulo Counter Specifications

Your counter must have single-bit reset, enable and clock inputs, a 4-bit count output and a one-bit carry output:

The counter is synchronous. This means count changes on the rising edge of the clock. It is set to zero if reset is asserted, otherwise it is incremented if enable is asserted, otherwise it does not change. If count is incremented when its value is $n-1$ it becomes 0 . carry is a combinational logic outputs that is asserted only when enable is asserted and count is $n-1$.

The carry output allows counters to be combined into a multi-digit counter by connecting the carry output of one digit to the enable input of the next-most-significant digit:

Note that enable is not a clock and count does not necessarily change in each clock cycle.
The modulo value, n, to use in your design depends on the last digit of your student ID as shown in the table below. For example, if your ID were A00123456 you would design a modulo-7 counter.

last digit of $\mathbf{I D}$	\boldsymbol{n}
$0,1,2$	5
$3,4,5$	6
6,7	7
8,9	9

Components

You will use the same four-digit 7-segment LED display, 200Ω current-limiting resistors and keypad as in previous labs.

Procedure

Design a modulo- n counter that meets the specifications above.
Download the lab5.qar project archive file from the course web site. This project archive includes a complete project except for the Verilog code in the file modncount.sv.
Open the archive file with Quartus and restore it to a convenient folder. Add your modulo- n counter code to modncount.sv. Do not rename the signals in the modncount module declaration. Change the pin assignments, if necessary, to match your circuit layout. Compile your design, program the FPGA and test it.
The project contains an .sdc file that defines the clock frequency (50 MHz) and the I/O signals as asynchronous. This allows Quartus to verify that your design operates at a 50 MHz clock frequency.

The test circuit instantiates four of your modulo-n counters as shown above and displays the count on the 4 -digit LED display. The 1 key increments the count at 5 Hz , the 2 key at 50 Hz and the 3 key at 500 Hz . Pushing the A key resets the counters.

The connections to the FPGA are shown in the following diagram:

The keypad and LED pin assignments in the supplied project are the same as in the previous lab. The keypad inputs have internal pull-up resistors configured. The pin assignments are shown below:

out a	Assignment Name Location	$\begin{aligned} & \text { Value } \\ & \text { PIN_49 } \end{aligned}$
$\xrightarrow{\text { O }} \mathrm{b}$	Location	PIN_65
$\xrightarrow{\text { out }} \mathrm{c}$	Location	PIN_54
Out d	Location	PIN_50
Out e	Location	PIN_46
out en[3]	Location	PIN_51
out en[2]	Location	PIN_69
out en[1]	Location	PIN_67
Out en[0]	Location	PIN_60
${ }^{\text {out }} \mathrm{f}$	Location	PIN_71
$\xrightarrow{\text { Out }} \mathrm{g}$	Location	PIN_58
out row[3]	Location	PIN_103
${ }^{\text {out }}$ row[2]	Location	PIN_100
$\xrightarrow{\text { out }}$ row[1]	Location	PIN_98
${ }^{\text {out }}$ row[0]	Location	PIN_ 86
in $\mathrm{Col}[3]$	Location	PIN_84
in $\operatorname{col}[2]$	Location	PIN_80
in col[1]	Location	PIN_76
in col[0]	Location	PIN_74
in clk50	Location	PIN_23
$\underline{8} \mathrm{Col}$	Weak Pull-Up Resistor	On

Submission

To get credit for completing this lab, submit the following to the Assignment folder for this lab on the course website:

1. A PDF document containing:

- A block diagram of your modulo-n counter.
- A listing of your modncount.sv file (but not lab5.sv).
- A screen capture of your compilation report.
- The schematic created by Tools > Netlist Viewers > RTL Viewer, clicking on the + button on the modncount:m[0].m block to expand it, and then File > Export... It may look like:

Note that this is the schematic of one of your modulo-n counters, not of the complete design.
2. If you do not demonstrate your design in the lab, a video of the display and keypad showing:

- the count being reset when A is pushed
- holding down 1 makes the rightmost digit increase, wrap-around at the correct value and increment the next mostsignificant digit,
- the other digits also wrapping and carrying when 2 and 3 are pressed,
- the counts being reset when A is pushed.

A sample video is available on the course website.

