State Machines

Exercise 1: Which signals in the above diagrams indicate the current state?

Exercise 2: Which outputs are registered? Which outputs could change whenever the input changes?

Exercise 3: Why?

Exercise 4: If we used 8-bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

Exercise 5: The link below describes a game. List the top-level game states. Decompose each of these into multiple states. Repeat.

Exercise 6: What happens if both reset and enable are asserted? **Veset**

Exercise 7: Draw the state transition diagram.

Exer	cise	7 . Di	aw the	Sta	te tra	isition diag		4=0	sex sile="				
	count [1] [0] 1		enable	next count [1] [0]			resit=0 sh wate=1					(10)	Ci.
													\mathbf{C}
0	0	reset 0	1	0	[0]			50)	ه)	עי			_
0	1	0	1	1	0				_				
1	0	0	1	1	1		(/	1					
1	1	0	1	0	0	•		1 1					
a	b	0	0	a	b	rese	E 084	()					
X	X	1	X	0	0	و۷۶-	P10:0	\sim .					
								neert	<u>- 1</u>				
							, (\alpha	€	3 (01)	E			
,	E	, .ev -	oble= vesi	:1 2 ; ==	.A :0		10	result	<i></i> =∆		/ 	//	

Exercise 8: Rewrite the state transition table and the code using u□nsigned. signals ň. and ň+1..

		h				ne	ext	_n+1	
		cou	unt			count			
_		[1]	[0]	reset	enable	[1]	[0]	replace	بالم
spice		0	0	0	1	0	1	heblace,	
replace vith	/	0	1	0	1	1	0	n+1	
<i>∞</i> ~	7	1	0	0	1	1	1	 	
		1		0	0	DY			
	_	→a	b	0	0	a	b		
		X	X	1	X	0	0		

Exercise 9: Write the state transition tables for the counter and light sequencer.

