State Machines **Exercise 1**: Which signals in the above diagrams indicate the current state? **Exercise 2**: Which outputs are registered? Which outputs could change whenever the input changes? Exercise 3: Why? **Exercise 4**: If we used 8-bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding? **Exercise 5**: The link below describes a game. List the top-level game states. Decompose each of these into multiple states. Repeat. **Exercise 6**: What happens if both reset and enable are asserted? **Veset** **Exercise 7**: Draw the state transition diagram. | Exer | cise | 7 . Di | aw the | Sta | te tra | isition diag | | 4=0 | sex sile=" | | | | | |------|-----------------|---------------|---------------|--------------------------|----------|--------------|----------------------|----------|---------------|----|-------|------|--------------| | | count [1] [0] 1 | | enable | next
count
[1] [0] | | | resit=0 sh wate=1 | | | | | (10) | Ci. | | | | | | | | | | | | | | | \mathbf{C} | | 0 | 0 | reset
0 | 1 | 0 | [0] | | | 50) | ه) | עי | | | _ | | 0 | 1 | 0 | 1 | 1 | 0 | | | | _ | | | | | | 1 | 0 | 0 | 1 | 1 | 1 | | (/ | 1 | | | | | | | 1 | 1 | 0 | 1 | 0 | 0 | • | | 1 1 | | | | | | | a | b | 0 | 0 | a | b | rese | E 084 | () | | | | | | | X | X | 1 | X | 0 | 0 | و۷۶- | P10:0 | \sim . | | | | | | | | | | | | | | | neert | <u>- 1</u> | | | | | | | | | | | | | , (\alpha | € | 3 (01) | E | | | | | , | E | , .ev
- | oble=
vesi | :1 2
; == | .A
:0 | | 10 | result | <i></i>
=∆ | | /
 | // | | **Exercise 8**: Rewrite the state transition table and the code using u□nsigned. signals ň. and ň+1.. | | | h | | | | ne | ext | _n+1 | | |-----------------|---|-----|-----|-------|--------|-------|-----|--|---------| | | | cou | unt | | | count | | | | | _ | | [1] | [0] | reset | enable | [1] | [0] | replace | بالم | | spice | | 0 | 0 | 0 | 1 | 0 | 1 | heblace, | | | replace
vith | / | 0 | 1 | 0 | 1 | 1 | 0 | n+1 | | | <i>∞</i> ~ | 7 | 1 | 0 | 0 | 1 | 1 | 1 | | | | | | 1 | | 0 | 0 | DY | | | | | | _ | →a | b | 0 | 0 | a | b | | | | | | X | X | 1 | X | 0 | 0 | | | **Exercise 9**: Write the state transition tables for the counter and light sequencer.