Implementation of Digital Logic Circuits

Exercise 1: If \overline{D} is a data bus and $\overline{D0}$ is low, is the value on the data bus an even or odd number?

 $\overline{p_0}$ is the least-significant bit and Low = 1 . it's an odd number.

Exercise 2: Which transistors are on when the output is high? When it is low? In which direction does the output current flow in each case?

Exercise 3: Which of these specifications does the manufacturer guarantee? Which are requirements?

for vo Hage levels

VIL 3 required

VOH } guzranteed

} typically quote as positive number.

Exercise 5: All else being equal, by how much would we expect to decrease power consumption when reducing logic levels from 5 V to 3.3 V? What would be the effect on power consumption in reducing the clock frequency from 50 MHz to 1 MHz?

$$\frac{P_{3.3} = 4 \cdot 4 \cdot (3.3)^2}{P_5 = 4 \cdot 4 \cdot 5^2} = \frac{11}{25} < \frac{1}{2}$$

Exercise 6: What are the active-state current and the RC time constant for a wired-or interrupt-request line using a $10k\Omega$ resistor pulling up a circuit with 50 pF capacitance to 3.3 V?

, , ,			
G	+1	L	H
(2)	H	L	L
% P	1_	Н	2

$$i = \frac{V}{R} = \frac{3.3}{10k} = 0.3 \text{ mA}$$

