
ELEX 2117 : Digital Techniques 2
2020 Fall Term

Introduction to Digital Design with Verilog HDL

This is an introduction to digital logic circuit design using the System Verilog Hardware Description Language. Details will
be covered later.
After this lecture you should be able to:

• define a module with single- and multi-bit logic inputs and outputs;
• write expressions using logic signals and operators;
• use assign statements and always_comb procedural blocks to generate combinational logic;
• use if and case statements to model multiplexers and arbitrary combinational logic functions;
• write Verilog numeric literals in binary, decimal and hex bases.

Introduction

Most of the functionality of modern electronics is de-
fined by its software. But software can be too slow,
or a processor too expensive or consumes too much
power for certain applications. In these cases wemay
need to design custom digital hardware. This course
explains how to design such circuits.
Today, all but the simplest designs are written us-

ing a Hardware Description Language (HDL) rather
than by drawing schematics. In this course we will
use System Verilog rather than the other popular
HDL, VHDL.

Combinational Logic

Let’s start with a simple example – a circuit called an
ex1 that has one output (y) that is the logical AND of
two input signals (a and b). The file example1.vhd
contains the following VHDL description:

// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Some observations on Verilog syntax:

• Everything following // on a line is a comment
and is ignored.

• Module and signal names can contain letters,
digits, underscores (_) and dollar signs ($). The
first character of an identifier must be a letter or

an underscore. They cannot be the same as cer-
tain reserved words (e.g. module).

• Verilog is case-sensitive: a and A would be dif-
ferent signals.

• Statements can be split across any number of
lines. A semicolon ends each statement.

Capitalisation and indentation styles vary. In this
course you will need to follow the coding style guide
available on the course web site.
Themodule definition begins by defining the input

and output signals for the device being designed.
The body of themodule contains one ormore state-

ments, each of which operates at the same time – con-
currently. This is the key difference between HDLs
and programming languages – HDLs allows us to de-
fine concurrent behaviour.
The single statement in this example is a signal as-

signment that assigns the value of an expression to
the output signal y. Expressions involving logic sig-
nals can use the logical operators ~ (NOT), & (AND), ^
(exclusive-OR), and | (OR). Parentheses can be used
to define the order of evaluation.
From this Verilog description a program called a

logic synthesizer (e.g. Intel’s Quartus) can generate a
circuit that has the required functionality. In this case
it’s not too surprising that the result is the following
circuit:

a
y

b
y

If you’re familiar with the C programming lan-
guage you’ll note that Verilog uses the same syntax

lec1.tex 1 2020-09-11 10:10

Ed

Ed

Ed

Ed

Ed

as the for most of its operators including arithmetic
(+, -, *, /, %), bitwise (&, |, ^, ~, <<, >>),
comparison (>, >=, !=, etc.), logical (&&, ||, !),
array indexing ([]), and ternary conditional (?:). C
syntax is also used for comments.
Exercise  What changes would result in a -input OR gate?

Exercise  What schematic would you expect if the statement

was assign y = (a ^ b) | c ;?

The output of a circuit such as this is a function
only of the current combination of input values and
is called a “combinational” logic circuit. “Sequential”
logic circuits includememory components and so the
current output can be a function of previous inputs as
well as the current input.

Buses and Multiplexers

Verilog’s if statementmodels a two-waymultiplexer.
The following example implements a multiplexer
that selects from one of two 4-bit inputs:

module ex3 (input logic sel,
input logic [3:0] a, b,
output logic [3:0] y) ;

always_comb begin
if (sel)

y <= a ;
else

y <= b ;
end

endmodule

which results in:

sel

b[3..0]
y[3..0]

...
0

1
a[3..0]

A group of logic signals that is treated together is
called a ‘bus’. The declaration logic [3:0] speci-
fies a bus with a ‘width’ of four bits. The bits in this
bus will be numbered from 3 to 0. For example, a[3]
would be the leftmost (most significant) bit of the 4-
bit bus a.
The always_comb statement, like the assign state-

ment, is concurrent and operates at the same time as
other statements in the module. However, the state-
ments within always_comb, are “sequential” and are
evaluated in order.

Exercise  If the signal i is declared as logic [2:0] i; what

is the ‘width’ of i? If i has the value  (decimal) what is the value

of i[2]? Of i[0]?

Exercise  What changes might result in a -bit -to- multi-

plexer controlled by a -bit sel input?

Case Statements and Numeric Constants

A Verilog case statement can model a multiplexer
with more than two inputs.
In the following example, a, is a two-bit signal

which selects one of four signals to be connected to
the output d.

module ex34 (input logic [1:0] a,
input logic [3:0] x0, x1, x2, x3,
output logic [3:0] d) ;

always_comb begin
unique case (a)

0: d = x0 ;
1: d = x1 ;
2: d = x2 ;
default: d = x3 ;

endcase
end

endmodule

which synthesizes into:

Mux0

SEL[1..0]

DATA[3..0]
OUT

Mux1

SEL[1..0]

DATA[3..0]
OUT

a[1..0]

Mux2

SEL[1..0]

DATA[3..0]
OUT

x0[3..0]
d[3..0]

x1[3..0]

x2[3..0]

Mux3

SEL[1..0]

DATA[3..0]
OUT

x3[3..0]

D
A

T
A

[0
]2

7<
-0

3-
>

D
A

T
A

[0
]3

D
A

T
A

[0
]1

1<
-2

D
A

T
A

[0
]1

9<
-1

3-
>

D
A

T
A

[1
]4

D
A

T
A

[1
]2

8<
-0

D
A

T
A

[1
]1

2<
-2

D
A

T
A

[1
]2

0<
-1

3-
>

D
A

T
A

[2
]5

D
A

T
A

[2
]2

9<
-0

D
A

T
A

[2
]1

3<
-2

D
A

T
A

[2
]2

1<
-1

3-
>

D
A

T
A

[3
]6

D
A

T
A

[3
]3

0<
-0

D
A

T
A

[3
]1

4<
-2

D
A

T
A

[3
]2

2<
-1

case is a sequential statement that “executes” one
statement as selected by the expression following
case. If none of the values match then the value
following default is executed. Always include a
default case1.
The selected values can be constants:

module ex4 (input logic [1:0] a,
output logic [7:0] d) ;

1We will cover exceptions later.

2

always_comb begin
unique case (a)

0: d = 8'hc0 ;
1: d = 8'b1111_1001 ;
2: d = 'ha4 ;
default: d = 176 ;

endcase
end

endmodule

which synthesizes into:
d[5]~not

Decoder0

IN[1..0] OUT[3..0]
a[1..0] d[7..0]

d[6]~not

0

1:
2,

1

1 0-
>

d[
4]

9

and is way to create arbitrary logic functions.
Numeric constants (“literals”) in Verilog are writ-

ten as the number of bits (default 32), an optional
quote (') followed by the base (b=binary, x=hex,
d=decimal), and the value. Underscore separators
(_) are optional.
Exercise What is the output in binarywhen the input is a=2'b10

?
Exercise  What are the values in decimal of the constants in the

code above?

A concise way to define look-up tables is to use
“unpacked arrays”:
module ex35 (input logic [1:0] a,

output logic [7:0] d) ;

logic [7:0] rom [0:3] =
'{ 8'hc0, 8'hf9, 8'ha4, 8'hb0 } ;

assign d = rom[a] ;

endmodule

which synthesizes into a memory:
rom

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

DATAIN[7..0]
8'h0

WADDR[1..0]
2'h0

RADDR[1..0]

DATAOUT[7..0]

a[1..0]

d[7..0]

Implementation

The process to implement a design using pro-
grammable logic such as a CPLD (Complex Pro-
grammable Logic Device) or FPGA (Field Pro-
grammable Gate Array) is shown below.

netlist

Verilog

map

place&route

assemble

programming file

.sdc

.qsf

JTAG
 port

CPLD

program

Quartus
synthesis

delays

After the design is mapped to gates and other logic
elements it must be fit into a specific device. Addi-
tional information needed to “place and route” the
design is supplied in two files. The .qsf (Quartus
settings) file device contains, among other things, the
device type (part number) and the pin assignments.
For example:

set_global_assignment -name DEVICE EPM240T100C5
set_location_assignment PIN_2 -to clk_in

...
set_location_assignment PIN_44 -to led[3]

Timing constraints such as clock frequencies and ex-
ternal device setup/hold times are defined in a .sdc
(Synopsis Design Constraint) file. For example, the
following statement requires that the design operate
with a 50 MHz (20 ns period) clock signal in the de-
sign named CLOCK_50:

create_clock -period 20ns CLOCK_50

Finally, the placed and routed design is “assem-
bled” to a file that can program the CPLD, typically
over a dedicated “JTAG”programming/diagnostic in-
terface port on the CPLD.

3

Ed

Ed

Ed

Ed

Ed

Ed

	Introduction
	Combinational Logic
	Buses and Multiplexers
	Case Statements and Numeric Constants
	Implementation

