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Abstract—Conventional images store a very limited dynamic range of brightness. The true luma in the bright area of such images is

often lost due to clipping. When clipping changes the R, G, B color ratios of a pixel, color distortion also occurs. In this paper, we

propose an algorithm to enhance both the luma and chroma of the clipped pixels. Our method is based on the strong chroma spatial

correlation between clipped pixels and their surrounding unclipped area. After identifying the clipped areas in the image, we partition

the clipped areas into regions with similar chroma, and estimate the chroma of each clipped region based on the chroma of its

surrounding unclipped region. We correct the clipped R, G, or B color channels based on the estimated chroma and the unclipped color

channel(s) of the current pixel. The last step involves smoothing of the boundaries between regions of different clipping scenarios. Both

objective and subjective experimental results show that our algorithm is very effective in restoring the color of clipped pixels.

Index Terms—Clipping, desaturation, color restoration, high dynamic range (HDR), inverse tone mapping.

Ç

1 INTRODUCTION

RECENTLY, high dynamic range (HDR) displays have
gained significant interest in industry. It is known that

the dynamic range of conventional displays is very limited
compared to the range of intensities perceivable by the
human visual system. Conventional displays usually have a
dynamic range of about two orders of magnitude, whereas
the human visual system has an overall dynamic range of
nearly 10 orders of magnitude, and can simultaneously
perceive intensities over a range of about five orders of
magnitude [1], [2]. This has motivated the development of
HDR image capturing and display technology.

One important HDR imaging problem is that, given the
HDR content, how to properly display them on a conven-
tional low dynamic range (LDR) media. Tone mapping
addresses this problem by reducing strong contrast from
the HDR scene values to the LDR displayable range while
preserving the image details and color appearance that are
important to appreciate the original scene content. In recent
years, various tone mapping operators [3], [4], [5], [6], [7],
[8], [9], [10] have been developed in order to show the HDR
contents on a conventional LDR display device or print.

Recently developed HDR displays [11] have greatly
extended the limited dynamic range of conventional cathode
ray tube (CRT), liquid crystal display (LCD), and projector-
based displays. Akyüz et al. [12] show that HDR displays
produce pictures with more appealing subjective quality
than conventional LDR displays. In order to effectively
display legacy LDR images and videos on HDR displays,
inverse tone mapping schemes have been developed to
extend the dynamic range of LDR images and videos. Legacy

images and videos store only a small dynamic range of
information due to the limitations of the capturing and
display devices. The very bright or dark parts of a scene are
clipped to the upper or lower displayable limits, and as a
result, information is lost. Special attention has been paid to
the restoration of the clipped pixels. Over the last few years,
several methods [13], [14], [15], [16], [17] have been
developed to enhance the luma of the clipped pixels so that
the enhanced clipped regions have higher dynamic range
and look more realistic on HDR displays.

Meylan et al. [14] apply a simple piecewise linear tone
scale function, composed of two slopes, one applied to the
diffuse areas and one applied to the specular reflected
areas, in order to particularly enhance the specular high-
lights. In [15], the Median Cut algorithm and Gaussian filter
are applied to estimate the light source density map. Then a
luma expansion is applied to enhance the clipped regions.
In [16], a smooth brightness enhancement function is
obtained by blurring a binary mask with a large kernel of
approximately Gaussian shape. A semiautomatic classifier
was developed in [17] to classify the clipped regions as
lights, reflections, or diffuse surfaces. Each class of objects is
enhanced with respect to its relative brightness. All of the
above schemes enhance only the luma, while the chroma
enhancement is not considered.

For a clipped pixel, often not all three red (R), green (G),
and blue (B) channels are clipped, nor does the same
amount of clipping occur in each channel. If clipping
changes the R, G, B color ratios of a pixel, then the result
is color distortion. In fact, color distortion occurs very often.
Although people are accustomed to the clipping effect in
highlights, where the distorted color is desaturated and
close to white, the distorted colors near the midtone produce
a very noticeable and disturbing effect. Fig. 1 gives an
example of color distortion caused by the clipping effect.
Fig. 1a is a correct exposure image, and Fig. 1c is the
corresponding overexposed image, where the yellow pixels
reveal obvious color distortions due to the clipping. We
enhance the luma of the clipped image using the best
possible values (i.e., the ground truth luma of the correct
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exposure image), while keeping the chroma distortion
unchanged. The luma-enhanced image is shown in Fig. 1e.
Figs. 1b, 1d, and 1f depict the plots of RGB intensities versus
the pixel position along the same horizontal line shown in
Figs. 1a, 1c, and 1e, respectively. In Figs. 1c and 1d, we
observe that the red channel is saturated for most pixels on
the shoe (nonshoelace part); and for this reason, this part
appears yellow in Fig. 1c rather than being orange as in the
correct exposure picture (in Fig. 1a). As shown in Fig. 1e,
enhancing only the luma does not solve the color distortion
problem. In fact, the color distortion in this image appears at
least as disturbing as in the clipped image (Fig. 1c). Ideally,
instead of changing all the color channels as it is done by
luma enhancement, we want to enhance only the clipped
color channel(s). Fig. 1f shows that enhancing luma makes
the unclipped channels (i.e., G and B) less accurate.
Therefore, we need an algorithm that corrects color and at
the same time enhances luma of a clipped image.

A few methods were developed to enhance the color
saturation and fill in clipped regions. One category of the
enhancement methods is to remove the specularity from the
highlighted area and reconstruct the highlighted object
assuming only diffuse reflection exists [18], [19], [20]. These
methods are particularly useful as a preprocessing before

tasks such as stereo matching, segmentation, and object
recognition. The highlight-removed images, however, do
not reflect the real scene under the original lighting. Hence,
these approaches cannot restore the lost information due to
clipping. Wang et al. [21] proposed an effective HDR image
hallucination approach for adding HDR details to the
overexposed and underexposed regions of an LDR image.
The method assumes that high-quality patches exist in the
image with similar textures as the regions that are over- or
underexposed. It corrects both the luma and the chroma,
while it fills in detailed textures for the overexposed and
underexposed regions. This approach, however, is semiau-
tomatic and it needs the user’s input to identify textures that
can be applied to fill in the underexposed or overexposed
areas. This manual intervention is often undesirable.

An automatic method proposed by Zhang and Brainard
[22] uses a statistical approach to fix saturation for over-
exposed pixels in color images. This work exploits the
correlation between the responses of RGB color channels at
each pixel, and estimates the clipped color channel(s) using
the Bayesian algorithm based on the corresponding unsatu-
rated color channel(s) and the prior distribution parameters.
The method is proved to be effective for enhancing clipped
pixels for images with a small saturated area; however, it is
not as effective for images with large saturated areas.

In this paper, we propose an effective clipped-pixel-
enhancing algorithm, which automatically restores both the
luma and chroma of the clipped pixels. We exploit the strong
correlation in chroma between saturated pixels and their
surrounding unsaturated pixels. Experimental results show
that our algorithm outperforms the Bayesian algorithm [22]
in both objective and subjective quality evaluations.

The rest of the paper is structured as follows: Section 2
describes our proposed method. The experimental results are
presented in Section 3. In Section 4, we conclude the paper
and point out the potential applications of our method.

2 OUR PROPOSED METHOD

In this paper, we aim at restoring the lost information in
overexposed color images based on the strong spatial
correlation in the chroma channels. The YCbCr color space
is designed so that the chroma channels will be smooth in
local regions for most images. It has been shown that
utilizing the smoothness property of chroma [23], [24], [25]
is better than assuming luma is smooth [16], [21]. Fig. 2
shows the normalized autocorrelation of R, G, B, Y , Cb, and
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Fig. 1. Example of color distortion due to the clipping. (a) A correct
exposure image, (c) the corresponding overexposed image, and (e) the
enhanced image with corrected luma for clipped pixels. (b), (d), and
(f) The plots of the RGB intensities versus the pixel index along the
highlighted horizontal lines of images (a), (c), and (e), respectively.

Fig. 2. Normalized autocorrelation of R, G, B, Y , Cb, and Cr signals
(average over 24 true-color Kodak images).



Cr at lags of 0-25 pixels. Each point in the figure is an
average value over the 24 true-color Kodak images [26].
From the graph, we can see that there is stronger
autocorrelation for the Cb and Cr channels than the R, G,
B, and Y channels. Exploiting the strong spatial correlations
in the Cb and Cr channels has more potential than
exploiting the correlations in the R, G, B, or Y channels.
For this reason, in our approach, we apply a chroma
interpolation for the clipped pixels rather than directly
correcting the R, G, and B signals.

Our proposed method can be broken down into several
steps, which are shown in the flowchart in Fig. 3. First, we
identify the clipped areas. Then, we partition each clipped
area into smaller regions according to the chroma. We
correct the chroma for each region and then correct the
corresponding RGB values for all clipped pixels. After-
ward, we apply a smoothing process to the corrected RGB
values. The last step involves “Enhancing the Contrast” and
can be performed by using any existing inverse tone
mapping process [15], [16], [27], which is not the focus of
our work. A detailed description of these steps is given in
the following sections.

2.1 Identify Clipped Areas

Before doing any enhancement, we first need to identify the
clipped areas. One way of doing this is to simply select
pixels from all three color channels that have the maximum
value (e.g., 255 for 8-bit per channel images). Fig. 4a shows a
clipped image with a rectangular region of interest. Fig. 4b
shows the clipped area (within the region of interest)
identified with a simple threshold (the maximum value,
e.g., 255 for 8-bit per channel images). The white pixels
represent the clipped area. As it can be seen, this simple
approach often generates very small isolated clipped areas
and large clipped areas with small holes. The effect is due to
image noise. The captured pixel values are determined not
only by the light from the scene, but also by the camera
response, sensor noise, and color filter array interpolation.
The in-camera processing adds noise to a pixel value, and
consequently, a clipped pixel may have a value slightly
lower than the maximum value. For this reason, we first
apply a bilateral filter [28], [29] to remove the noise. Then, a
threshold � is applied to each color channel of a pixel to

identify clipped pixels and channels. We experimentally

selected � to be 252.5 for 8-bit per channel images herein.

Fig. 4c shows the clipped area in the region of interest

identified by our method. We observe that the clipped area

in Fig. 4c is quite clean and more appropriate for

subsequent color correction compared to that in Fig. 4b.

Note that the bilateral filter is used only for identifying the

clipped areas. The original unfiltered image is used in all of

the following steps to avoid losing detail from the image.

2.2 Partition Clipped Areas

The purpose of partitioning the clipped areas is to group the

clipped pixels into regions with similar chroma before

correcting the color for each region. We first partition the

clipped areas into spatially disconnected regions, which

probably belong to different surfaces and have different

chroma. Each region may still contain multiple clipped

objects that have different colors. We segment each region

according to its chroma. To eliminate the illumination

differences on the same color surface, we consider only

chroma quantities, i.e., Cb and Cr, in the segmentation. For

simplicity, in order to segment the region, we choose to use

either the Cb or Cr, whichever has a larger variance within

the considered region.
The pixels with heavier saturation (i.e., 2 or 3-channel

saturated pixels) are considered as one subregion, where

the color is potentially heavily distorted. The 1-channel

saturated pixels are further segmented using a histogram-

based multithreshold algorithm presented in [31]. This

segmentation algorithm often results in a few large and

many small subregions. Finally, we merge these small

regions or the regions without a valid surrounding region

(note: surrounding region will be explained shortly in

Section 2.3) with their neighboring clipped regions. If more

than one neighboring clipped region exists, the current

region is merged with the neighboring region that is the

closest to the current region in chroma.
An example of clipped area partition is given in Fig. 5,

where connected clipped areas (i.e., white pixels in Fig. 5a)

are partitioned into smaller regions (shown and numbered

in Fig. 5b). Each region has similar chroma. This partition-

ing is essential for the subsequent color correction steps.
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Fig. 3. Flowchart of our proposed method.

Fig. 4. Example of clipped areas. (a) Clipped image with a rectangular
region of interest, (b) clipped areas in the region of interest identified with
a simple threshold (R, G, or B ¼ 255), and (c) clipped areas in the region
of interest identified with our proposed method.



2.3 Correct Chroma

As explained before, the R, G, and B values are strongly
affected by the illumination of the area. There are much
stronger spatial variations in R, G, and B values than in
chroma. Although the RGB and chroma in clipped areas
can both be estimated using an interpolation method given
their neighboring unclipped areas, a smooth signal, like the
chroma, may be more accurately estimated, since there is
less spatial variation associated with such a signal. For this
reason, we chose to estimate the chroma values in a clipped
region by smoothly interpolating the chroma of neighboring
unclipped pixels. Once the chroma values are estimated,
then we use them to calculate the corrected R, G, or B
values in the clipped regions.

In order to correct a clipped region, we first attempt to
find an unclipped region with similar chroma next to it. We
select neighboring pixels with similar color to the clipped
region as seed points. This is done by first choosing the
unclipped or already corrected neighboring pixels with
gradients of both chroma channels less than a threshold
(experimentally, we determined 2.5 works well). Then,
starting from each seed point, we apply a region growing
algorithm shown in [31] to both Cb and Cr, and the
intersection of the two obtained regions is a surrounding
region with similar chroma to the clipped region. Since
there may be small chroma variations within each clipped
region, we take the union of all surrounding areas obtained
from different seed points as the surrounding region for a
clipped region. If the resulting surrounding region consists
of only very few pixels, then the clipped region is
considered as a light source or a specularly reflected area.
In this case, we enhance only the luma signal.

Fig. 6 shows an example of a surrounding region
associated with the clipped region on the girl’s arm. We
observe that most unclipped pixels in the arm area (with
similar chroma as the clipped region) that are close to the
clipped region are selected as the surrounding region,
which is used for the chroma estimation of the clipped
pixels on the arm (Fig. 6c).

The Cb and Cr values of the clipped region could be
interpolated from its surrounding region. A problem arises
from the fact that the surrounding region is irregularly
shaped with some “missing” pixels, which cannot be used
in the interpolation because they are either clipped pixels or
nonclipped pixels with different chroma to the current
clipped region. A common interpolation approach is to use
convolution (filtering). However, traditional convolution
does not work when there are missing samples within the
convolution mask.

For the reason stated above, we use normalized con-
volution [32] instead, which allows for missing samples by
adjusting the filter weights to use only the valid samples
that fall within the convolution mask. The idea of normal-
ized convolution is to associate with each pixel a certainty
component m expressing the level of confidence in the pixel
measurement. The certainty map m has the same dimension
as the image.

To make the discussion more pertinent to our problem at
hand, that is, interpolating chroma for saturated pixels, the
normalized convolution can be expressed as follows:

~cðx; yÞ ¼ cðx; yÞ �mðx; yÞ½ ��hðx; yÞ
mðx; yÞ�hðx; yÞ ; ð1Þ

where the certainty mapmðx; yÞ is 1 for the known pixels that
are used in the interpolation, and mðx; yÞ is 0 for the missing
samples. The cðx; yÞ and ~cðx; yÞ represent the chroma channel
signal (Cb orCr) before and after the convolution, and hðx; yÞ
denotes the filter for performing the convolution. Here, a
Gaussian filter with a standard deviation 5 is used as the
function hðx; yÞ.

The normalized convolution mask hðx; yÞ has a finite
size. Consequently, a pixel located near the center of the
clipped region may not have any pixel in the surrounding
region lying in its mask. Hence, the pixel value cannot
directly be corrected. In order to solve this problem, we
choose to use the already corrected clipped pixels together
with the surrounding region as the known data for
estimating the uncorrected clipped pixels. In other words,
the certainty map used is

mðx; yÞ

¼
1; for unsaturated pixels in the surrounding region

and saturated pixels that have been corrected;

0; otherwise:

8><
>:

This helps improve the smoothness of the corrected chroma
in the clipped region. Since already corrected pixels are
used in the normalized convolution, the pixel order within a
clipped region is very important. Because estimation error
could propagate, the pixels with potentially less error
should be corrected first.

In order to describe the smoothing process, we define a
few notations here. Let � denote the saturated pixel set, that
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Fig. 5. Example of clipped area partition. (a) The clipped areas before
partition (white pixels) and (b) the clipped areas partitioned into regions
with similar chroma.

Fig. 6. Example of a surrounding region. (a) Clipped image, (b) clipped
areas (in color) superimposed on the image luma, and (c) the
surrounding region (white pixels) for the clipped area on the girl’s arm.



i s , � ¼ ðx; yÞ : Rðx; yÞ � �; or Gðx; yÞ � �; or Bðx; yÞ � �f g.
Furthermore, we use �1, �2, and �3 to, respectively,
represent the sets of clipped pixels with 1, 2, and 3
saturated channels.

Since the 1-channel saturated pixels �1 tend to have less
color distortion, and hence, less estimation error than 2- and
3-channel saturated pixels �2 and �3, we first correct the
pixels in �1, followed by pixels in �2, and finally, pixels in
�3. Since clipped pixels that are close to the surrounding
region tend to have a strong correlation with the surround-
ing unclipped pixels, there is small estimation uncertainty,
i.e., a small degree of error estimation for such pixels. For
this reason, within each saturation category, we also sort the
clipped pixels according to their distances to the nearest
surrounding pixels, and first correct the ones closer to the
surrounding region.

Fig. 7 shows the results of chroma correction using our
method described in this section. Since the clipping in this
image happens mostly in the red channel, we show the
correction results by presenting the Cr channel (before and
after correction) in Fig. 7. We can see in the circled area that
the clipped image (Fig. 7b) is darker than the unclipped
image (Fig. 7a), resulting in blocky distortion of the Cr
channel. While the corrected chroma Cr, shown in Fig. 7c, is
very close to that of the unclipped image. The above chroma
correction result can be observed more easily in part
Figs. 7d and 7e, where the difference between Fig. 7a and
Fig. 7b, and the difference between Fig. 7a and Fig. 7c are
shown.

2.4 Correct RGB Values

We calculate the missing R, G, or B values in each clipped
region based on the estimated Cb and Cr values (calculated

in the previous step) and the unsaturated R, G, or B values
in that region. We elaborate this correction process for the
following three different scenarios, i.e., �1, �2, and �3.

2.4.1 Correct 2-Channel Saturated Pixels

Correction of 2-channel saturated pixels is the most
straightforward scenario. We know that the conversion
from RGB to YCbCr, introduced in the ITU-R BT.601 [33], is

Y

Cb

Cr

2
64

3
75 ¼

0:2568 0:5041 0:0979

�0:1482 �0:2910 0:4392

0:4392 �0:3678 �0:0714

2
64

3
75�

R

G

B

2
64

3
75

þ
0:0627

0:5020

0:5020

2
64

3
75:

ð2Þ

The above RGB and YCbCr values are within a range of
0.0-1.0. From (2), we have

Cb ¼ ½�0:1482 �0:2910 0:4392� � ½R G B�T þ 0:5020; ð3Þ
Cr ¼ ½0:4392 �0:3678 �0:0714� � ½R G B�T þ 0:5020: ð4Þ

When two channels are clipped, then one of the R, G, and B
values, say, U (which stands for the unsaturated channel), is
known and the two clipped channels, say, S1 and S2 (which
stand for the saturated channels), are unknown and need to
be solved for. TheU; S1, andS2 are all components in the three
color channels [R, G, B]. The corrected values of the two
saturated channels can be uniquely solved for using the two
equations (3) and (4). Therefore, we have

~S1 ¼ f1ðU;Cb; CrÞ;
~S2 ¼ f2ðU;Cb; CrÞ;

where f1 and f2 are functions of U , Cb, and Cr, and ~S
denotes the corrected value of color channel S. Note that we
do not use Y to correct the RGB color channels, since Y is
distorted when any color channel is clipped. The functions
f1 and f2 can be derived uniquely from the RGB to CbCr
conversion equations (3) and (4).

As an example, let us consider a case where R and G are
the two clipped unknown channels in a saturated pixel, and
B is the unclipped channel. From (3) and (4), we can solve
for ~R and ~G given Cb, Cr, and B as follows:

~R ¼ ½ðCb� 0:5020� 0:4392BÞ � ð�0:3678Þ
� ðCr� 0:5020þ 0:0714BÞ � ð�0:2910Þ�=
½ð�0:1482Þ � ð�0:3678Þ � 0:4392� ð�0:2910Þ�;

~G ¼ ½ðCb� 0:5020� 0:4392BÞ � 0:4392

� ðCr� 0:5020þ 0:0714BÞ � ð�0:1482Þ�=
½ð�0:2910Þ � 0:4392� ð�0:3678Þ � ð�0:1482Þ�:

Any other 2-channel saturated pixels can be corrected in the
same fashion.

2.4.2 Correct 1-Channel Saturated Pixels

Correction of 1-channel saturated pixels is similar to
correcting 2-channel saturated pixels. Since there are only
one unknown value S, and two equations (3) and (4), the
value can be estimated twice by using the corrected Cb and
Cr, respectively, as well as the two unsaturated channel
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Fig. 7. Example of chroma correction. The Cr channel of (a) unclipped
image, (b) clipped image, and (c) corrected image using our proposed
algorithm. The difference between (a) and (b) is shown in (d), and the
difference between (a) and (c) is shown in (e).



values U1 and U2;. Then, we simply take the average of the

two estimations as the corrected value of the saturated

channel. The estimation process can be described as

~S ¼ S1 þ S2

2
; where

S1 ¼ f3ðU1; U2; CbÞ;
S2 ¼ f4ðU1; U2; CrÞ;

where the functions f3 and f4 are derived from (3) and (4),

respectively.
As an example, let us consider a case whereR is the clipped

unknown channel, and G and B are the unclipped known

channels. The corrected value ~R is computed as follows:

~R ¼ R1 þR2

2
; where

R1 ¼
Cb� ð�0:2910Þ �G� 0:4392�B� 0:5020

�0:1482
;

R2 ¼
Cr� ð�0:3678Þ �G� ð�0:0714Þ �B� 0:5020

0:4392
:

Any other channel saturated pixels (i.e., if G or B is clipped)

can be corrected in the same fashion.

2.4.3 Correct 3-Channel Saturated Pixels

In the case of 3-channel saturated pixels, there are three

unknown variables. Hence, three equations are needed to

solve the corrected R, G, and B values. We first estimate the

luma Y value of the 3-channel saturated pixels based on the

surrounding region. We fit the clipped region and its

surrounding area with a 2D Gaussian function. Unlike

many other surface-fitting methods (e.g., [21]), we do not

enforce any assumptions on the location or rotation of the

2D Gaussian function. By not assuming the center of the

Gaussian function as the centroid of the clipped region, we

are able to handle more general and sophisticated clipping

cases. For example, our model works well for the situation

where the brightest spot is not located near the center of the

clipped region and the surrounding region only partially

encloses the clipped area. In general, a 2D Gaussian

function is of the following form:

gðx; yÞ ¼ Ae�½aðx�x0Þ2þ2bðx�x0Þðy�y0Þþcðy�y0Þ2� þB;

where A, B, a, b, c, x0, and y0 are the parameters, and ½ a b
b c

�
is positive definite.

The least-squares surface-fitting problem can be solved

using the following optimization form:

argmin
A;B;a;b;c;x0;y0

Xn
i¼1

½Yi � gðxi; yiÞ�2;

Subject to :
a b

b c

� �
� 0;

where (xi, yi, Yi) is the ith pixel in the surrounding area, xi
and yi represent the pixel location, Yi is the luma at pixel (xi,

yi), and the symbol “� ” stands for positive definite. In

order to remove the constraint from the above optimization

problem, we apply variable substitutions. A symmetric and

positive definite matrix M can be decomposed into

M ¼ LLT , where L is a lower triangular matrix [34]. For
the matrix

a b
b c

� �

in the constraint, we have

a b
b c

� �
¼ l11 0

l21 l22

� �
� l11 l21

0 l22

� �
:

Substituting a, b, and c using the new variables l11, l21, and
l22, the constraint is implied in the relation. Therefore, the
optimization problem becomes unconstrained as follows:

argmin
A;B;l11;l21;l22;x0;y0

Xn
i¼1

½Yi � gðxi; yiÞ�2;

where gðx; yÞ ¼ Ae�½
l2
11
2 ðx�x0Þ2þl11l21ðx�x0Þðy�y0Þþ

l2
21
þl2

22
2 ðy�y0Þ2� þB.

The optimization can be solved with a standard least-
squares fitting algorithm. Once the parameters are esti-
mated, the luma Y at the 3-channel saturated pixels can be
computed by evaluating the Gaussian function. In the end,
the corrected RGB values ~R, ~G, and ~B are solved using
(2) as follows:

~R
~G

~B

2
64

3
75 ¼

1:16438356 0:00000030 1:59602688

1:16438356 �0:39176253 �0:81296829

1:16438356 2:01723263 0:00000305

2
64

3
75

�
Y

Cb

Cr

2
64

3
75�

0:0627

0:5020

0:5020

2
64

3
75

0
B@

1
CA:

In the process of correcting saturated RGB values, we
need to eliminate unrealistic corrected pixel values and
obtain a stable enhancement algorithm. Hence, we set a
lower bound � and an upper bound � as the multiplicative
enhancement factor (i.e., the ratio between corrected value
and clipped value) for each clipped pixel. We know the fact
that the true values in the clipped channels should be
greater than the clipped value. Therefore, the lower bound
� is set to be greater than (or equal to) 1. To ensure a smooth
transition between the unsaturated and saturated regions,
the lower bound � is acted as a smooth enhancement factor
mask to the saturated region. The mask can be denoted by:

� ¼ ð�0 � 1Þ � d

d0
þ 1; when 0 < d < d0;

�0; when d � d0;

(

where the enhancement factor�0 is a constant and�0 > 1, the
constant d0 is the transition width, and d denotes the distance
between the current saturated pixel and the closest unsatu-
rated pixel in the surrounding region. The mask keeps the
lower enhancement factor as �0 for the pixels far from the
unsaturated region, and gradually reduces the lower bound
to 1 as the pixel gets closer to the unsaturated region.

2.5 Smooth Enhancement

The main purpose of color enhancement is to obtain visually
plausible images and videos. Often, there are small jumps of
enhanced values between adjacent 1, 2, and 3-channel
saturated regions. This is because different strategies are
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used for �1, �2, and �3 when calculating saturated RGB
channels from the corrected Cb and Cr, as described in
Section 2.4. As a result, a smoothing process near the region
boundaries of �1, �2, and �3 is needed to reduce disturbing
contours and obtain natural looking enhanced images.

In order to smooth the boundary between regions �i and
�j, where i > j, among the pixels near the region boundary,
we choose to adjust the pixels in �i, where the pixels have
more saturated channels and relatively higher estimation
errors than those in �j. Fig. 8 illustrates the smoothing
process. We create a transition band with a width w0 on the
more saturated side (i.e., �i) of the region boundary. The
smoothed value at pixel (x0; y0) in the transition band is a
linear combination of the estimated values (from the
previous correction steps) at this pixel and its nearby region
Ax0;y0

. We define the area A associated with pixel (x0; y0) by
first finding the pixel (x1; y1) that is closest to (x0; y0) and
also in the less saturated region �j. The area Ax0;y0

is
composed of (x1; y1) and its surrounding pixels in �i that
are within a distance of three pixels from (x1; y1).

The adjusted saturated channel value ~P ðx0; y0Þ at (x0; y0)
is given by

~P ðx0; y0Þ ¼ P ðx0; y0Þ �
w

w0
þ 1� w

w0

� �

� 1

N
�

X
ðx;yÞ2Ax0 ;y0

P ðx; yÞ;
ð5Þ

where w0 is the width of the transition band, w is the
distance between (x0; y0) and (x1; y1), and N is the number
of pixels in the area Ax0;y0

. The parameter w0 can be chosen
to adjust the amount of the smoothing. A reasonable range
of w0 is 3-10 pixels. The adjusted pixel value ~P ðx0; y0Þ is a
linear combination of pixel values at (x0; y0) and Ax0;y0

. The
reason we take a small area Ax0;y0

rather than a single pixel
in �j is to make the transition band smoother and avoid
streaks in the band due to texture in �j.

The effect of the smoothing process is illustrated in Fig. 9.
Fig. 9a shows the saturation category map, with light gray,
dark gray, and white representing �1, �2, and �3,
respectively, and black being the unsaturated region. We
observe that the enhanced image before the smoothing
process has blocky artifacts between different saturated
regions, while the enhanced image after smoothing appears
more natural and visually pleasant.

3 EXPERIMENTAL RESULTS

In this section, we present some experimental results to
show the effectiveness of our proposed method for

enhancing the clipped pixels. We use conventional 24 bits
per pixel LDR color images for our tests. Thumbnails of our
test images are shown in Fig. 10.

In our experiment, we generate the clipped images by
clipping the R;G;B values that are greater than a threshold
(e.g., 255� 0:8 for 8 bits per color channel images). Then, we
enhance the clipped images using our proposed method as
well as the Bayesian algorithm [22], the only color correction
algorithm for clipped pixels that we are aware of. To assess
the quality of the corrected images, we compute the peak
signal-to-noise ratio (PSNR) values (averaged overR;G; and
B channels) of each test image for 1) the clipped image with no
correction, 2) the enhanced image generated by the Bayesian
algorithm, and 3) the enhanced image produced by our
proposed algorithm. We also use two commonly used quality
metrics, the CIELAB �E [35] and S-CIELAB [36], to evaluate
the above-mentioned three situations. For each image, the �E
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Fig. 8. Illustration of the smoothing process between 1, 2, and 3-channel
saturated regions, i.e., �1;�2; and �3.

Fig. 9. Example of the smoothing effect. (a) The saturation category
map, (b) enhanced image before smoothing, and (c) enhanced image
after smoothing.

Fig. 10. Thumbnails of our test images. In reading order: girl, landscape,
baby_girl, mountain, shoes, sunset, kodim03(caps), kodim05(motor-
cycles), kodim06(boat), kodim12(beach), kodim16(lake), kodim21(light-
house), and kodim23(parrots).



or S-CIELAB metric is the averaged value over the saturated
pixels in that image.

The image-quality comparison is listed in Table 1. From
the table, we can see that while both the Bayesian algorithm
and our proposed algorithm improve quality, our proposed
method outperforms the Bayesian algorithm by an average
of 4.10 dB in PSNR, 3.57 in CIELAB �E, and 0.72 in S-
CIELAB over all test images. Our method performs well
especially for images with large portion of clipped areas,
such as baby_girl, sunset, and parrots images.

Fig. 11 shows the resulting images and is used for
evaluating the subjective quality of the enhanced clipped
pixels, and in turn, the overall image. For each image, we
show (in reading order) the original image, clipped image,
clipped areas superimposed on the image luma, enhanced
image using the Bayesian algorithm, and enhanced image
using our proposed algorithm. Pixel values of images in
each group are linearly scaled using the same scaling factor
to realize the maximum display contrast. In Fig. 11, we can
see that all clipped images have color distortions due to
overexposure. The Bayesian algorithm corrects color for
most clipped regions. However, it overcorrects the color in
some clipped regions and results in further color distortion.
An overcorrection example can be seen in the background
area of the “baby_girl” image. These artifacts happen when
the color properties of the clipped region are different from
the statistical properties of the unclipped regions in the
image. Distortion usually occurs when the images do not
possess much color variety or a large portion of clipped
pixels exists. Compared to the Bayesian algorithm, our
algorithm gives comparable or better subjective quality,
without notable artifacts.

Our method works well when a saturated region is
associated with an unsaturated surrounding region with
similar chroma. In some cases, no such surrounding region
can be found, and our method cannot be used to estimate
the chroma in the clipped region. These cases are extremely
difficult to handle due to the lack of useful information. A
possible solution is to use a classifier, as developed in [17],
to classify these clipped regions as lights, reflections, or
diffuse surfaces. Then, the brightness of each class of objects
is enhanced by a multiplicative factor. The classifier,
however, usually requires human interaction. Furthermore,
the multiplicative factors are set to rather arbitrary values
(1.5 for lights, 1.25 for reflections).

One important application of the clipped pixel color
enhancement is to use it as a preprocessing step of an inverse
tone mapping for producing high-quality HDR images/
video from existing LDR images/video. Since color clipping
is often more perceptible in high-contrast inverse-tone-
mapped HDR images, correcting the clipping appears more
important for generating and displaying HDR images. In
order to verify the importance of color correction for the
clipped pixels in the contrast enhancement process, we
apply an inverse tone mapping to convert LDR images into
HDR images. Since a logarithmic function is the empirical
model of the tone mapping operators, we use the inverse of
the logarithmic function as the inverse tone mapping
operator to expand the contrast of the LDR images. The
subjective quality of the inverse-tone-mapped HDR images
cannot be directly shown on a conventional computer screen
or print, due to the limited dynamic range of such media. For
this reason, we present two “virtual” exposures of each HDR
image, as done in [16], [21], to display HDR images in print.
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TABLE 1
Quality Comparison between Different Algorithms



Each exposure reveals different brightness ranges of the
entire dynamic range of the HDR image. Fig. 12 shows two
virtual exposures of the HDR “girl” and “baby_girl” image
sets. Each column of images corresponds to (from left to

right) the original unclipped image, the clipped image, the
enhanced image produced by the Bayesian algorithm, and
the enhanced image obtained by our proposed algorithm,
respectively. In Fig. 12, especially the low exposure images,
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Fig. 11. Results of clipped pixel enhancement. For each row, we show (from left to right) the original image, clipped image, clipped areas
superimposed on the image luma, enhanced image using Bayesian algorithm, and enhanced image using our proposed algorithm.



we observe that the image corrected with our approach is

more similar to the original than either the clipped image or

the result of Bayesian algorithm. This verifies that our color

enhancement algorithm produces high-quality HDR images

from clipped LDR images.

4 CONCLUSIONS

In this paper, we have proposed an effective method for
enhancing clipped pixels in color images. We take advan-
tage of the strong correlation between the chroma of the
clipped pixels and their surrounding unclipped pixels. Our
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Fig. 12. Two virtual exposures of HDR images. The four columns of images correspond to (from left to right) the original unclipped LDR image, the
clipped LDR image, the enhanced image obtained by the Bayesian algorithm, and the enhanced image produced by our proposed algorithm,
respectively.



method greatly reduces the color distortion caused by
clipping. It also effectively corrects the luma of pixels in the
clipped areas. Our proposed method outperforms the
Bayesian algorithm by an average of 4.10 dB in PSNR, 3.57
in CIELAB �E, and 0.72 in S-CIELAB. Subjective results also
show that the enhanced images generated by our method
are visually more plausible than the clipped images and the
enhanced images produced by the Bayesian algorithm.

Many other research areas can benefit from the color
correction for clipped pixels. We showed that by applying
inverse tone mapping to LDR images that have been
enhanced by our method, we obtain more plausible and
realistic HDR images than applying inverse tone mapping
directly to the clipped images. Since color has been widely
used in machine-based vision systems, our algorithm
may also help increase the performance of tasks such as
color-based image segmentation, object recognition, track-
ing, panoramic images generating, and multiview image
processing.
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