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ABSTRACT 

 
H.264/AVC quickly gains ground in many aspects of video 
applications, due to its superior coding performance. Inserting a 
company logo into H.264/AVC compressed video streams has been 
a highly desirable application in the TV telecasting industry. In this 
paper, we propose a novel and efficient logo-insertion scheme for 
H.264/AVC compressed videos. Our proposed scheme overcomes 
the numerous coding dependencies, and minimizes the changes to 
the original compressed videos. Experimental results show that our 
proposed transcoding scheme achieves extraordinary video quality 
and significantly reduces the bit rate and computational cost. 
Compared with the cascaded transcoding scheme, our proposed 
logo-insertion method achieves an average of 1.16 dB PSNR 
increase, or a 68.6% bit-rate reduction. Our scheme also 
dramatically reduces the total transcoding time and the 
motion-estimation time by at least 67.2% and 97.4%, respectively. 
 

Index Terms—Logo insertion, video transcoding, 
H.264/AVC, compensation, TV broadcasting. 
 

1. INTRODUCTION 
 

Inserting a company logo into compressed video streams is a highly 
desirable application in the telecasting industry. Adding a logo to 
videos has been proven to be the most effective way for advertising 
a telecasting station. A distinct logo assists the audience to easily 
identify a TV channel, but mainly it can be used as a watermark, 
helping broadcasters and content providers to protect their 
ownership rights. For this reason, it is highly desirable to insert the 
logo at the transmitting end rather than using technologies (such as 
Flash Video and Microsoft Silverlight which are mainly designed 
for programming and delivering video on the Internet) that add 
logos at the receiver end. 

The challenge of logo insertion is that a large amount of video 
content that reaches a TV station is already encoded, and the only 
straightforward approach to adding a logo is through the cascaded 
pixel-domain transcoding. This approach first completely decodes 
the entire bitstream, then adds a logo, and finally re-encodes the 
new video sequence, as shown in Fig. 1. However, such an 
approach is not desirable by content providers since they lose 
control over the original quality, let alone that re-encoding the new 
stream will always degrade the picture quality (or increase the bit 
rate). It is, therefore, desirable to design a scheme that adds the logo 
to the compressed video without significantly affecting the original 
quality of the content.  

A practical way for logo insertion is through efficient 
transcoding of a small area of the picture where the logo is located, 
avoiding complete decoding and encoding of the rest of the frame. 
An efficient transcoding scheme may greatly reduce the 
computational cost for logo insertion. It also has the potential of  

 

Fig. 1.  Flowchart of cascaded logo-insertion transcoding scheme. 
 
resulting in higher video quality than the cascaded transcoding by 
reducing the re-quantization error resulting from decoding and 
re-encoding a video stream. 

Several logo-insertion methods have been proposed for logo 
insertion in MPEG-2 compressed streams [1]–[3]. Currently, 
H.264/AVC, which is regarded as the most advanced video coding 
standard, has been shown to outperform MPEG-2 by 50% and is 
destined to replace MPEG-2 in every aspect of video 
communications [4], [5]. For this reason, it is desirable to consider 
logo insertion for H.264/AVC compressed video, a topic not 
addressed so far by researchers. The challenges in this case come 
from the much more advanced coding features supported by 
H.264/AVC, which were not present in MPEG-2. Such features 
include intra prediction, deblocking filter, intra 4 4 prediction 
mode coding, and adaptive entropy coding, all of which make 
previously developed logo-insertion methods for MPEG-2 not 
applicable to H.264/AVC compressed videos.  

In this paper, we propose a logo-insertion scheme for 
H.264/AVC pre-encoded video streams. Our proposed scheme 
overcomes the numerous challenges induced by the H.264/AVC 
coding standard. Compared with the cascaded transcoding scheme, 
an average of 1.16 dB PSNR gain, 72.6% computational time 
reduction, and 97.7% motion-estimation time reduction are 
achieved by our proposed method. 

The remainder of the paper is structured as follows. Section 2 
discusses the challenges of H.264/AVC logo-insertion transcoding. 
Our proposed logo-insertion method is described in Section 3.  
Section 4 presents the performance evaluation of our method. 
Conclusions are drawn in Section 5. 

 
2. CHALLENGES OF H.264/AVC LOGO INSERTION 

 
Various coding dependencies are the main challenges of 
H.264/AVC logo insertion. Compared with MPEG-2, the coding 
dependencies in H.264/AVC take more advantage of quantity 
correlation, and accomplish higher coding performance. They, 
however, become major challenges for logo insertion, since 
changing the coding of the logo area without affecting the coding of 
other areas is very difficult, given the existence of coding 
dependencies. These unique challenges make existing MPEG-2 
based logo-insertion schemes not applicable to H.264/AVC 
compressed videos. 

The coding dependencies in H.264/AVC can be classified into 
the video-content dependencies (i.e., dependencies among pixel 
values) and data-coding dependencies (i.e., dependencies among 
coding parameters).  
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Video-content dependencies are mainly caused by intra and 
inter predictions. Intra macroblocks (MBs) are coded differently in 
MPEG-2 and H.264/AVC. In MPEG-2, intra MBs are 
DCT-transformed without prediction in spatial domain. In 
H.264/AVC, however, intra prediction is used, which induces 
dependencies among pixel values in intra slices.  

Inter MBs are predictively coded in both MPEG-2 and 
H.264/AVC. Compared with MPEG-2, the additional features, such 
as flexible macroblock (MB) partitions for motion compensation, 
multiple reference frames, and quarter-pixel prediction, in 
H.264/AVC offer higher prediction accuracy, while causing more 
content dependencies and complicating logo insertion. Furthermore, 
the deblocking filter used in H.264/AVC is another way of creating 
video-content dependencies. 

Data-coding dependencies are due to the use of predictive or 
adaptive parameter-coding schemes. Such coding schemes include 
the coding of intra 4 4 prediction modes, the coding of motion 
vectors, the context-adaptive variable length coding (CAVLC), and 
context-adaptive binary arithmetic coding (CABAC). 

Among the aforementioned schemes, encoding intra 4 4 
prediction modes and encoding motion vectors are both based on 
predictive coding.  In these cases, some form of prediction residual 
values rather than the actual parameters (i.e., intra modes or motion 
vectors) are coded. A change of one parameter is very likely to 
affect other parameters that are predictively coded based on the 
changed value. Compensations are a must to change a single 
parameter only. 

Both CAVLC and CABAC are adaptive entropy-coding 
schemes to further compress quantized integer-transform 
coefficients. The scheme for coding coefficients of one block 
depends heavily on the properties of its neighbouring blocks, with 
CABAC having heavier dependency than CAVLC. For this reason, 
changing the coding of one block without affecting the others 
proves extremely challenging. 

 
3. PROPOSED LOGO INSERTION SCHEME 

 
Our proposed logo-insertion transcoding scheme is designed to 
overcome all aforementioned challenges. Pixel-domain transcoding 
and transform-domain transcoding are two categories of 
transcoding approaches. To properly handle the deblocking filter 
during the logo-insertion process, we need to work in the pixel 
domain in order to compute the gradient information of pixels, a 
process required when applying the deblocking filter [6]. For this 
reason, we chose to use pixel-domain transcoding for our proposed 
method.  

For ease of explanation, in this paper, we refer to the frame 
region that is covered by a logo as the “logo part”, depicted by the 
diagonally shaded area in Fig. 2. We denote the region that is 
directly affected by the logo insertion due to video-content 
dependencies as the “logo-affected part1” and the region directly 
affected by data-coding dependencies as the “logo-affected part2”. 
These parts are illustrated by the vertically shaded area and 
horizontally shaded area in Fig. 2. The un-shaded area is called the 
“logo-unaffected part”.  

The efficiency of a logo-insertion transcoding scheme depends 
entirely on minimizing the changes caused on the original video 
stream. In our proposed logo-insertion method, we aim at quickly 
stopping change propagations caused by the video-content and 
data-coding dependencies. The architecture of our proposed 
scheme is illustrated by the flowchart shown in Fig. 3. We first 
decode and re-encode the “logo part”. Then, we adjust the coding of  

 
Fig. 2.  Slice partition sketch map for our logo-insertion scheme. 
 

 
Fig. 3.  Flowchart of our proposed logo-insertion scheme. 
 

the “logo-affected part1” and “logo-affected part2” to stop change 
propagations caused by video-content and data-coding 
dependencies, respectively. Finally, the bitstream that corresponds 
to the “logo-unaffected part” is directly copied to the target stream. 

For logo insertion at the “logo part”, the new video content 
P’(x, y, n) is usually expressed as a linear combination of the logo 
value L(x, y) and the original video content P(x, y, n), in the 
following form: 

),,,()1(),(),,(' nyxPyxLnyxP ×−+×= αα                            (1) 
where (x, y) is the pixel position, n is the frame index in a video 
sequence, and α is the transparency factor of the logo. The value 
α  is in the range of 0 < α ≤  1. In particular, when α = 1, the 
original video content at the “logo part” is completely replaced by 
the logo, giving rise to an opaque logo overlapping. In our 
logo-insertion scheme, we re-encode the “logo part” to reflect the 
video-content changes as shown in (1). 

In order to stop the “domino effect” of change propagations 
caused by various dependencies, the “logo-affected part1” and 
“logo-affected part2” work as buffer zones in our scheme. If 
compensations for video-content and data-coding dependencies 
take place properly within these regions, the change propagation 
caused by logo insertion can be stopped quickly, leaving the 
“logo-unaffected part” unaffected. The following two subsections 
describe in detail our compensation algorithms for the 
video-content dependencies and data-coding dependencies.  
 
3.1. Adjustment for Video Content Dependencies 
 
In this section, we present our scheme for stopping video content 
change propagation due to logo insertion. Such propagation is 
caused by intra prediction, inter prediction, deblocking, and 
sub-pixel interpolation. The directly affected area is “logo-affected 
part1”. It includes the MBs directly to the right, left, and bottom of 
the “logo part”, which could potentially be affected and start 
propagating changes by intra prediction, sub-pixel interpolation, 
and deblocking filters. In addition, the MBs with motion vectors 
pointing to the “logo part” are affected by inter prediction.  

For the “logo-affected part1” in intra slices, we apply lossless 
coding to ensure that the pixel values remain unchanged in this part. 
Hence, content change propagation is effectively stopped. For the 
“logo-affected part1” in inter slices, we choose to re-encode it. 
Although small requantization errors may occur and possibly 
propagate to the subsequent inter frames in the same group of 
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pictures (GOP), the re-encoding scheme turns out to be a good 
trade-off between video quality and bit rate. 

In order to reduce the computational cost of our scheme, we 
consider using two potentially effective pre-determined motion 
vectors (i.e., a zero motion vector and the original motion vector 
that is used in the pre-encoded video stream) instead of completely 
re-doing motion estimation to re-encode “logo part” and 
“logo-affected part1” in inter frames.  

We consider three different MB scenarios for motion 
compensation: I) MBs in the “logo part” and not predicted from the 
“logo part”, II) MBs in the “logo-affected part1” and predicted from 
the “logo part”, and III) MBs in the “logo part” and also predicted 
from the “logo part”. Since in H.264/AVC, prediction residuals are 
coded rather than the actual pixel values, here we show the 
modified residual R’(x,y,n) for Scenarios I, II, and III in (2a)(2b), 
(3a)(3b), and (4a)(4b), respectively.  
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where mv and mv’  denote the original and modified motion vectors, 
respectively. 

From the above equations, we conclude that when α  is small, 
using the original motion vector as mv’ results in an accurate 
motion estimation, i.e., small modified residual R’(x,y,n). When α 
is large, using zero motion vector as mv’ (for Scenarios I and III) 
works relatively well.  

 

3.2. Adjustment for Data Coding Dependencies 
 
In H.264/AVC, not only video content is coded based on 
previously-coded values, but many coding parameters are also 
predictively or adaptively coded based on their neighboring data. 
Such coding parameters include intra 4 4 prediction modes, 
motion vectors, CAVLC, and CABAC. In what follows, we present 
our proposed compensation method for stopping the change 
propagation caused by each of the aforementioned coding 
parameters.  

Since the intra 4 4 prediction mode coding, motion-vector 
coding, and CAVLC scheme use only the neighboring information 
as coding reference, the potential change propagation caused by 
such coding can be stopped locally. In our logo-insertion scheme, 
the propagation is stopped in “logo affected part2”, the direct 
neighborhood of “logo affected part1”.  

In the process of coding intra 4 4 prediction mode, the actual 
value of the prediction mode is not directly coded. Instead, a 
MostProbableMode is first predicted according to the availabilities 
and prediction modes of its left and upper blocks. A flag is sent to 
signify if the MostProbableMode is used as the actual intra 4 4 
prediction mode. If the flag is ON, the actual mode is the same as 
the MostProbableMode, and no other information is needed to 
correctly decode the actual mode. If the flag is OFF, a residual 
mode is sent to indicate which of the modes other than the 

MostProbableMode is used as the actual prediction mode.  
In order to stop the propagation of the intra 4 4 prediction 

mode changes, for every MB that is directly to the right or on the 
bottom of the “logo-affected part1”, we check if its 
MostProbableMode is changed due to the re-encoding of the “logo 
part” and the “logo-affected part1”. If the MostProbableMode is 
not changed, no coding adjustment is needed. If it is changed, the 
mode coding needs to be modified to reflect the change. The 
modification process involves locating the residual mode in the 
original bitstream, decoding the residual mode, calculating the 
actual mode, computing and encoding the new residual mode, and 
putting the new encoded residual mode into the correct position of 
the transcoded bitstream.  

The next step in our algorithm involves an adjustment that 
stops the propagation of motion-vector changes. During the process 
involved in coding a motion vector, first a predicted motion vector, 
mvp, is calculated based on some previously-encoded reference 
motion vectors. Other than some special cases, the predicted motion 
vector mvp is the median of the three reference motion vectors 
associated with blocks to the left, top, and top right of the current 
block. After predicting mvp, the motion-vector residual mvr 
between the actual motion vector and the predicted vector mvp is 
encoded and transmitted.  

During logo insertion, some of the “logo part” and 
“logo-affected part1” are re-encoded using different motion vectors. 
For those MBs that are directly to the right, on the bottom, or the 
bottom left of the “logo part” or “logo-affected part1”, their 
predicted motion vectors may be affected by the re-encoding. In 
order to keep their actual motion vectors unchanged, coding 
compensations need to be performed. For a MB in the 
“logo-affected part2”, we first compute a new predicted motion 
vector mvp’ based on its neighboring data. Then, we modify its 
motion-vector residual as )'( mvpmvpmvr −+  in order to 

compensate for the change to the predicted motion vector. At last, 
the new motion-vector residual is re-entropy coded. In so doing, the 
propagation of motion-vector changes stops at the “logo-affected 
part2”. 

The next step involves entropy-coding dependencies. In the 
case of CAVLC, the number of nonzero transform coefficients is 
coded using a look-up table. The choice of look-up tables depends 
on the number of nonzero coefficients in neighboring blocks. In our 
scheme, for each MB in the “logo-affected part2” and also directly 
to the right or on the bottom of the “logo-affected part1”, we check 
if its predicted number of nonzero transform coefficients is changed. 
If this number is unchanged, the corresponding bitstream remains 
the same. Otherwise, we may need to re-do the entropy coding 
according to the newly predicted number of nonzero transform 
coefficients and the corresponding look-up table.  

In the case of CABAC, probability models used in the entropy 
coding of transform coefficients are selected based on local 
statistics of already encoded information. This highly adaptive 
entropy-coding scheme imposes extremely strong dependency 
among neighboring blocks. For this reason, the addition of a logo 
causes changes that make it almost impossible to avoid repeating 
the entropy coding step for all the blocks that are coded after the 
“logo part” in each slice. Thus, our scheme performs CABAC 
entropy coding for all MBs that are encoded after the “logo part”.   

 

4. EXPERIMENTAL RESULTS 
 

Our proposed transcoding scheme was implemented based on the 
H.264/AVC reference software JM13.2 [7]. Several representative 

(2b) 

(3a) 

(3b) 

(2a) 

(4a) 

(4b) 
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and commonly used YUV video sequences of size 640×480 were 
employed in our experiments. All video sequences were set to 30 
frames per second, with an “I,B,B,P,B,B,P, …”GOP structure and 
GOP length of 15. A total number of 300 frames were used for each 
sequence. The input bitstreams were generated using quantization 
parameter equal to 28. The logo used is the “AChannel” with a 
68×70 pixel size and 0.6 transparency factor. 

Very limited bit-rate control is provided by our proposed 
logo-insertion method. This is because the majority of the 
pre-encoded bitstream is either directly copied to the targeting 
transcoded bitstream or it is slightly adjusted. Only a small portion 
of a video is re-encoded, where the re-encoding quantization 
parameter is the main bit-rate control factor. Furthermore, in order 
to get a perceptually uniform video quality, we use the same 
quantization parameter as that used in the pre-encoded stream. In so 
doing, no bit-rate control needs to be provided by our method. 

We compare the rate distortion between our proposed method 
and the cascaded approach in Fig. 4. The rate-distortion curve for 
the cascaded transcoding method was generated by using different 
quantization parameters at the re-encoding stage. The PSNR values 
were computed using the original uncompressed YUV file with the 
logo added as a reference. All PSNR values are averages over 300 
frames. From Fig. 4, we observe that for each of the three sequences 
and for the same bit rate, our proposed transcoding scheme 
outperformed the cascaded transcoder by at least 1.13 dB in terms 
of PSNR. An average of 1.16 dB PSNR increase is achieved. We 
also observe that, at the same PSNR, our proposed transcoding 
method yields bit savings that range from 66.8% to 70.8% 
compared with the cascaded method. Although the lossless coding 
we proposed consumes 12.32% to 17.95% more intra-frame bit rate 
than the cascaded approach, the resulting less re-quantization errors 
yield better picture quality for the transcoded videos. Note that the 
highest resulting PSNR for both methods is determined by the 
quality of the pre-encoded video.  

Fig. 5 presents the average relative computational time that our 
method and the cascade method used for different test sequences. 
These results indicate that our proposed transcoder reduces the total 
transcoding time by at least 67.2% (i.e., 1 32.8%) compared to the 
time used by the cascaded transcoder. In addition, the 
motion-estimation (ME) time used by our proposed transcoder was 
only 2.1% to 2.6% that of the cascaded transcoder, an exciting fact 
given that motion estimation consumes a large portion of the total 
encoding time in H.264/AVC. In our experiments, a fast search 
rather than a full search was used in both transcoding schemes, 
which reduces the weigh in computation that motion estimation 
costs. We expect our proposed scheme to achieve even more 
computational time reduction when a full search is used.  

Subjective video quality was also assessed in our experiments. 
Results showed that, for the same bit rate, our proposed transcoder 
gave better or comparable reconstructed-video quality to that 
obtained by the cascaded transcoder. The cascaded transcoder loses 
more high-frequency component during the re-encoding process, 
resulting in smoothed frames, while our proposed scheme preserves 
more video details. 

Note that we did not compare our results with another 
transcoding method, since we are not aware of any other efficient 
logo-insertion method for H.264/AVC pre-encoded video. We did 
not compare with the cascaded transcoding approach that re-uses 
the original prediction modes and motion vectors in the re-encoding 
process, since it causes even worse video quality distortion than the 
cascaded transcoding method that we present herein, and its 
computational cost is still higher than our proposed method. 

 
 

 
Fig. 4.  Rate-distortion comparison. 

 
Fig. 5.  Comparison of relative transcoding time. 
 

5. CONCLUSIONS 
 

We proposed an efficient logo-insertion scheme for H.264/AVC 
compressed video streams. Our approach is attractive for 
pre-encoded videos, which content providers prohibit telecasting 
station to completely decode and re-encode due to changes that 
such process may cause. Our scheme overcomes many video 
content and data-coding dependencies, and minimizes the changes 
to the original video streams. Experimental results show that our 
proposed scheme outperforms the cascaded transcoding method by 
an average of 1.16 dB PSNR increase, or a 68.6% bit-rate reduction. 
Furthermore, our proposed scheme significantly reduces the total 
transcoding time by at least 67.2%, and the motion-estimation time 
by at least 97.4%, compared with the cascaded-transcoding method. 
The above results are very encouraging, given that our method has 
exceptionally performance in both video quality and computational 
complexity.  
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