
LOGO INSERTION TRANSCODING FOR H.264/AVC COMPRESSED VIDEO

Di Xu and Panos Nasiopoulos

Department of Electrical and Computer Engineering, University of British Columbia, B.C., Canada
Email: {dixu, panos}@ece.ubc.ca

ABSTRACT

H.264/AVC quickly gains ground in many aspects of video
applications, due to its superior coding performance. Inserting a
company logo into H.264/AVC compressed video streams has been
a highly desirable application in the TV telecasting industry. In this
paper, we propose a novel and efficient logo-insertion scheme for
H.264/AVC compressed videos. Our proposed scheme overcomes
the numerous coding dependencies, and minimizes the changes to
the original compressed videos. Experimental results show that our
proposed transcoding scheme achieves extraordinary video quality
and significantly reduces the bit rate and computational cost.
Compared with the cascaded transcoding scheme, our proposed
logo-insertion method achieves an average of 1.16 dB PSNR
increase, or a 68.6% bit-rate reduction. Our scheme also
dramatically reduces the total transcoding time and the
motion-estimation time by at least 67.2% and 97.4%, respectively.

Index Terms—Logo insertion, video transcoding,
H.264/AVC, compensation, TV broadcasting.

1. INTRODUCTION

Inserting a company logo into compressed video streams is a highly
desirable application in the telecasting industry. Adding a logo to
videos has been proven to be the most effective way for advertising
a telecasting station. A distinct logo assists the audience to easily
identify a TV channel, but mainly it can be used as a watermark,
helping broadcasters and content providers to protect their
ownership rights. For this reason, it is highly desirable to insert the
logo at the transmitting end rather than using technologies (such as
Flash Video and Microsoft Silverlight which are mainly designed
for programming and delivering video on the Internet) that add
logos at the receiver end.

The challenge of logo insertion is that a large amount of video
content that reaches a TV station is already encoded, and the only
straightforward approach to adding a logo is through the cascaded
pixel-domain transcoding. This approach first completely decodes
the entire bitstream, then adds a logo, and finally re-encodes the
new video sequence, as shown in Fig. 1. However, such an
approach is not desirable by content providers since they lose
control over the original quality, let alone that re-encoding the new
stream will always degrade the picture quality (or increase the bit
rate). It is, therefore, desirable to design a scheme that adds the logo
to the compressed video without significantly affecting the original
quality of the content.

A practical way for logo insertion is through efficient
transcoding of a small area of the picture where the logo is located,
avoiding complete decoding and encoding of the rest of the frame.
An efficient transcoding scheme may greatly reduce the
computational cost for logo insertion. It also has the potential of

Fig. 1. Flowchart of cascaded logo-insertion transcoding scheme.

resulting in higher video quality than the cascaded transcoding by
reducing the re-quantization error resulting from decoding and
re-encoding a video stream.

Several logo-insertion methods have been proposed for logo
insertion in MPEG-2 compressed streams [1]–[3]. Currently,
H.264/AVC, which is regarded as the most advanced video coding
standard, has been shown to outperform MPEG-2 by 50% and is
destined to replace MPEG-2 in every aspect of video
communications [4], [5]. For this reason, it is desirable to consider
logo insertion for H.264/AVC compressed video, a topic not
addressed so far by researchers. The challenges in this case come
from the much more advanced coding features supported by
H.264/AVC, which were not present in MPEG-2. Such features
include intra prediction, deblocking filter, intra 4 4 prediction
mode coding, and adaptive entropy coding, all of which make
previously developed logo-insertion methods for MPEG-2 not
applicable to H.264/AVC compressed videos.

In this paper, we propose a logo-insertion scheme for
H.264/AVC pre-encoded video streams. Our proposed scheme
overcomes the numerous challenges induced by the H.264/AVC
coding standard. Compared with the cascaded transcoding scheme,
an average of 1.16 dB PSNR gain, 72.6% computational time
reduction, and 97.7% motion-estimation time reduction are
achieved by our proposed method.

The remainder of the paper is structured as follows. Section 2
discusses the challenges of H.264/AVC logo-insertion transcoding.
Our proposed logo-insertion method is described in Section 3.
Section 4 presents the performance evaluation of our method.
Conclusions are drawn in Section 5.

2. CHALLENGES OF H.264/AVC LOGO INSERTION

Various coding dependencies are the main challenges of
H.264/AVC logo insertion. Compared with MPEG-2, the coding
dependencies in H.264/AVC take more advantage of quantity
correlation, and accomplish higher coding performance. They,
however, become major challenges for logo insertion, since
changing the coding of the logo area without affecting the coding of
other areas is very difficult, given the existence of coding
dependencies. These unique challenges make existing MPEG-2
based logo-insertion schemes not applicable to H.264/AVC
compressed videos.

The coding dependencies in H.264/AVC can be classified into
the video-content dependencies (i.e., dependencies among pixel
values) and data-coding dependencies (i.e., dependencies among
coding parameters).

3693978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009

Video-content dependencies are mainly caused by intra and
inter predictions. Intra macroblocks (MBs) are coded differently in
MPEG-2 and H.264/AVC. In MPEG-2, intra MBs are
DCT-transformed without prediction in spatial domain. In
H.264/AVC, however, intra prediction is used, which induces
dependencies among pixel values in intra slices.

Inter MBs are predictively coded in both MPEG-2 and
H.264/AVC. Compared with MPEG-2, the additional features, such
as flexible macroblock (MB) partitions for motion compensation,
multiple reference frames, and quarter-pixel prediction, in
H.264/AVC offer higher prediction accuracy, while causing more
content dependencies and complicating logo insertion. Furthermore,
the deblocking filter used in H.264/AVC is another way of creating
video-content dependencies.

Data-coding dependencies are due to the use of predictive or
adaptive parameter-coding schemes. Such coding schemes include
the coding of intra 4 4 prediction modes, the coding of motion
vectors, the context-adaptive variable length coding (CAVLC), and
context-adaptive binary arithmetic coding (CABAC).

Among the aforementioned schemes, encoding intra 4 4
prediction modes and encoding motion vectors are both based on
predictive coding. In these cases, some form of prediction residual
values rather than the actual parameters (i.e., intra modes or motion
vectors) are coded. A change of one parameter is very likely to
affect other parameters that are predictively coded based on the
changed value. Compensations are a must to change a single
parameter only.

Both CAVLC and CABAC are adaptive entropy-coding
schemes to further compress quantized integer-transform
coefficients. The scheme for coding coefficients of one block
depends heavily on the properties of its neighbouring blocks, with
CABAC having heavier dependency than CAVLC. For this reason,
changing the coding of one block without affecting the others
proves extremely challenging.

3. PROPOSED LOGO INSERTION SCHEME

Our proposed logo-insertion transcoding scheme is designed to
overcome all aforementioned challenges. Pixel-domain transcoding
and transform-domain transcoding are two categories of
transcoding approaches. To properly handle the deblocking filter
during the logo-insertion process, we need to work in the pixel
domain in order to compute the gradient information of pixels, a
process required when applying the deblocking filter [6]. For this
reason, we chose to use pixel-domain transcoding for our proposed
method.

For ease of explanation, in this paper, we refer to the frame
region that is covered by a logo as the “logo part”, depicted by the
diagonally shaded area in Fig. 2. We denote the region that is
directly affected by the logo insertion due to video-content
dependencies as the “logo-affected part1” and the region directly
affected by data-coding dependencies as the “logo-affected part2”.
These parts are illustrated by the vertically shaded area and
horizontally shaded area in Fig. 2. The un-shaded area is called the
“logo-unaffected part”.

The efficiency of a logo-insertion transcoding scheme depends
entirely on minimizing the changes caused on the original video
stream. In our proposed logo-insertion method, we aim at quickly
stopping change propagations caused by the video-content and
data-coding dependencies. The architecture of our proposed
scheme is illustrated by the flowchart shown in Fig. 3. We first
decode and re-encode the “logo part”. Then, we adjust the coding of

Fig. 2. Slice partition sketch map for our logo-insertion scheme.

Fig. 3. Flowchart of our proposed logo-insertion scheme.

the “logo-affected part1” and “logo-affected part2” to stop change
propagations caused by video-content and data-coding
dependencies, respectively. Finally, the bitstream that corresponds
to the “logo-unaffected part” is directly copied to the target stream.

For logo insertion at the “logo part”, the new video content
P’(x, y, n) is usually expressed as a linear combination of the logo
value L(x, y) and the original video content P(x, y, n), in the
following form:

),,,()1(),(),,(' nyxPyxLnyxP ×−+×= αα (1)
where (x, y) is the pixel position, n is the frame index in a video
sequence, and α is the transparency factor of the logo. The value
α is in the range of 0 < α ≤ 1. In particular, when α = 1, the
original video content at the “logo part” is completely replaced by
the logo, giving rise to an opaque logo overlapping. In our
logo-insertion scheme, we re-encode the “logo part” to reflect the
video-content changes as shown in (1).

In order to stop the “domino effect” of change propagations
caused by various dependencies, the “logo-affected part1” and
“logo-affected part2” work as buffer zones in our scheme. If
compensations for video-content and data-coding dependencies
take place properly within these regions, the change propagation
caused by logo insertion can be stopped quickly, leaving the
“logo-unaffected part” unaffected. The following two subsections
describe in detail our compensation algorithms for the
video-content dependencies and data-coding dependencies.

3.1. Adjustment for Video Content Dependencies

In this section, we present our scheme for stopping video content
change propagation due to logo insertion. Such propagation is
caused by intra prediction, inter prediction, deblocking, and
sub-pixel interpolation. The directly affected area is “logo-affected
part1”. It includes the MBs directly to the right, left, and bottom of
the “logo part”, which could potentially be affected and start
propagating changes by intra prediction, sub-pixel interpolation,
and deblocking filters. In addition, the MBs with motion vectors
pointing to the “logo part” are affected by inter prediction.

For the “logo-affected part1” in intra slices, we apply lossless
coding to ensure that the pixel values remain unchanged in this part.
Hence, content change propagation is effectively stopped. For the
“logo-affected part1” in inter slices, we choose to re-encode it.
Although small requantization errors may occur and possibly
propagate to the subsequent inter frames in the same group of

3694

pictures (GOP), the re-encoding scheme turns out to be a good
trade-off between video quality and bit rate.

In order to reduce the computational cost of our scheme, we
consider using two potentially effective pre-determined motion
vectors (i.e., a zero motion vector and the original motion vector
that is used in the pre-encoded video stream) instead of completely
re-doing motion estimation to re-encode “logo part” and
“logo-affected part1” in inter frames.

We consider three different MB scenarios for motion
compensation: I) MBs in the “logo part” and not predicted from the
“logo part”, II) MBs in the “logo-affected part1” and predicted from
the “logo part”, and III) MBs in the “logo part” and also predicted
from the “logo part”. Since in H.264/AVC, prediction residuals are
coded rather than the actual pixel values, here we show the
modified residual R’(x,y,n) for Scenarios I, II, and III in (2a)(2b),
(3a)(3b), and (4a)(4b), respectively.

[]

[]

=

−−−

=

−+

=

0'when

,)1,,(),,()1(
'when

,),,(),(),,(

),,('

mv

nyxPnyxP
mvmv

nyxPyxLnyxR

nyxR
α

α

[]

=

−Δ+Δ++−−

=

−Δ+Δ+−Δ+Δ+−

=

0'when

),1,,()1,,(),,(
'when

,)1,,(),(),,(

),,('

mv

nyyxxPnyxPnyxR
mvmv

nyyxxPyyxxLnyxR

nyxR

α

[]

[]

=

−−−

=

Δ+Δ+−+−

=

0'when

,)1,,(),,()1(
'when

,),(),(),,()1(

),,('

mv

nyxPnyxP
mvmv

yyxxLyxLnyxR

nyxR
α

αα

where mv and mv’ denote the original and modified motion vectors,
respectively.

From the above equations, we conclude that when α is small,
using the original motion vector as mv’ results in an accurate
motion estimation, i.e., small modified residual R’(x,y,n). When α
is large, using zero motion vector as mv’ (for Scenarios I and III)
works relatively well.

3.2. Adjustment for Data Coding Dependencies

In H.264/AVC, not only video content is coded based on
previously-coded values, but many coding parameters are also
predictively or adaptively coded based on their neighboring data.
Such coding parameters include intra 4 4 prediction modes,
motion vectors, CAVLC, and CABAC. In what follows, we present
our proposed compensation method for stopping the change
propagation caused by each of the aforementioned coding
parameters.

Since the intra 4 4 prediction mode coding, motion-vector
coding, and CAVLC scheme use only the neighboring information
as coding reference, the potential change propagation caused by
such coding can be stopped locally. In our logo-insertion scheme,
the propagation is stopped in “logo affected part2”, the direct
neighborhood of “logo affected part1”.

In the process of coding intra 4 4 prediction mode, the actual
value of the prediction mode is not directly coded. Instead, a
MostProbableMode is first predicted according to the availabilities
and prediction modes of its left and upper blocks. A flag is sent to
signify if the MostProbableMode is used as the actual intra 4 4
prediction mode. If the flag is ON, the actual mode is the same as
the MostProbableMode, and no other information is needed to
correctly decode the actual mode. If the flag is OFF, a residual
mode is sent to indicate which of the modes other than the

MostProbableMode is used as the actual prediction mode.
In order to stop the propagation of the intra 4 4 prediction

mode changes, for every MB that is directly to the right or on the
bottom of the “logo-affected part1”, we check if its
MostProbableMode is changed due to the re-encoding of the “logo
part” and the “logo-affected part1”. If the MostProbableMode is
not changed, no coding adjustment is needed. If it is changed, the
mode coding needs to be modified to reflect the change. The
modification process involves locating the residual mode in the
original bitstream, decoding the residual mode, calculating the
actual mode, computing and encoding the new residual mode, and
putting the new encoded residual mode into the correct position of
the transcoded bitstream.

The next step in our algorithm involves an adjustment that
stops the propagation of motion-vector changes. During the process
involved in coding a motion vector, first a predicted motion vector,
mvp, is calculated based on some previously-encoded reference
motion vectors. Other than some special cases, the predicted motion
vector mvp is the median of the three reference motion vectors
associated with blocks to the left, top, and top right of the current
block. After predicting mvp, the motion-vector residual mvr
between the actual motion vector and the predicted vector mvp is
encoded and transmitted.

During logo insertion, some of the “logo part” and
“logo-affected part1” are re-encoded using different motion vectors.
For those MBs that are directly to the right, on the bottom, or the
bottom left of the “logo part” or “logo-affected part1”, their
predicted motion vectors may be affected by the re-encoding. In
order to keep their actual motion vectors unchanged, coding
compensations need to be performed. For a MB in the
“logo-affected part2”, we first compute a new predicted motion
vector mvp’ based on its neighboring data. Then, we modify its
motion-vector residual as)'(mvpmvpmvr −+ in order to

compensate for the change to the predicted motion vector. At last,
the new motion-vector residual is re-entropy coded. In so doing, the
propagation of motion-vector changes stops at the “logo-affected
part2”.

The next step involves entropy-coding dependencies. In the
case of CAVLC, the number of nonzero transform coefficients is
coded using a look-up table. The choice of look-up tables depends
on the number of nonzero coefficients in neighboring blocks. In our
scheme, for each MB in the “logo-affected part2” and also directly
to the right or on the bottom of the “logo-affected part1”, we check
if its predicted number of nonzero transform coefficients is changed.
If this number is unchanged, the corresponding bitstream remains
the same. Otherwise, we may need to re-do the entropy coding
according to the newly predicted number of nonzero transform
coefficients and the corresponding look-up table.

In the case of CABAC, probability models used in the entropy
coding of transform coefficients are selected based on local
statistics of already encoded information. This highly adaptive
entropy-coding scheme imposes extremely strong dependency
among neighboring blocks. For this reason, the addition of a logo
causes changes that make it almost impossible to avoid repeating
the entropy coding step for all the blocks that are coded after the
“logo part” in each slice. Thus, our scheme performs CABAC
entropy coding for all MBs that are encoded after the “logo part”.

4. EXPERIMENTAL RESULTS

Our proposed transcoding scheme was implemented based on the
H.264/AVC reference software JM13.2 [7]. Several representative

(2b)

(3a)

(3b)

(2a)

(4a)

(4b)

3695

and commonly used YUV video sequences of size 640×480 were
employed in our experiments. All video sequences were set to 30
frames per second, with an “I,B,B,P,B,B,P, …”GOP structure and
GOP length of 15. A total number of 300 frames were used for each
sequence. The input bitstreams were generated using quantization
parameter equal to 28. The logo used is the “AChannel” with a
68×70 pixel size and 0.6 transparency factor.

Very limited bit-rate control is provided by our proposed
logo-insertion method. This is because the majority of the
pre-encoded bitstream is either directly copied to the targeting
transcoded bitstream or it is slightly adjusted. Only a small portion
of a video is re-encoded, where the re-encoding quantization
parameter is the main bit-rate control factor. Furthermore, in order
to get a perceptually uniform video quality, we use the same
quantization parameter as that used in the pre-encoded stream. In so
doing, no bit-rate control needs to be provided by our method.

We compare the rate distortion between our proposed method
and the cascaded approach in Fig. 4. The rate-distortion curve for
the cascaded transcoding method was generated by using different
quantization parameters at the re-encoding stage. The PSNR values
were computed using the original uncompressed YUV file with the
logo added as a reference. All PSNR values are averages over 300
frames. From Fig. 4, we observe that for each of the three sequences
and for the same bit rate, our proposed transcoding scheme
outperformed the cascaded transcoder by at least 1.13 dB in terms
of PSNR. An average of 1.16 dB PSNR increase is achieved. We
also observe that, at the same PSNR, our proposed transcoding
method yields bit savings that range from 66.8% to 70.8%
compared with the cascaded method. Although the lossless coding
we proposed consumes 12.32% to 17.95% more intra-frame bit rate
than the cascaded approach, the resulting less re-quantization errors
yield better picture quality for the transcoded videos. Note that the
highest resulting PSNR for both methods is determined by the
quality of the pre-encoded video.

Fig. 5 presents the average relative computational time that our
method and the cascade method used for different test sequences.
These results indicate that our proposed transcoder reduces the total
transcoding time by at least 67.2% (i.e., 1 32.8%) compared to the
time used by the cascaded transcoder. In addition, the
motion-estimation (ME) time used by our proposed transcoder was
only 2.1% to 2.6% that of the cascaded transcoder, an exciting fact
given that motion estimation consumes a large portion of the total
encoding time in H.264/AVC. In our experiments, a fast search
rather than a full search was used in both transcoding schemes,
which reduces the weigh in computation that motion estimation
costs. We expect our proposed scheme to achieve even more
computational time reduction when a full search is used.

Subjective video quality was also assessed in our experiments.
Results showed that, for the same bit rate, our proposed transcoder
gave better or comparable reconstructed-video quality to that
obtained by the cascaded transcoder. The cascaded transcoder loses
more high-frequency component during the re-encoding process,
resulting in smoothed frames, while our proposed scheme preserves
more video details.

Note that we did not compare our results with another
transcoding method, since we are not aware of any other efficient
logo-insertion method for H.264/AVC pre-encoded video. We did
not compare with the cascaded transcoding approach that re-uses
the original prediction modes and motion vectors in the re-encoding
process, since it causes even worse video quality distortion than the
cascaded transcoding method that we present herein, and its
computational cost is still higher than our proposed method.

Fig. 4. Rate-distortion comparison.

Fig. 5. Comparison of relative transcoding time.

5. CONCLUSIONS

We proposed an efficient logo-insertion scheme for H.264/AVC
compressed video streams. Our approach is attractive for
pre-encoded videos, which content providers prohibit telecasting
station to completely decode and re-encode due to changes that
such process may cause. Our scheme overcomes many video
content and data-coding dependencies, and minimizes the changes
to the original video streams. Experimental results show that our
proposed scheme outperforms the cascaded transcoding method by
an average of 1.16 dB PSNR increase, or a 68.6% bit-rate reduction.
Furthermore, our proposed scheme significantly reduces the total
transcoding time by at least 67.2%, and the motion-estimation time
by at least 97.4%, compared with the cascaded-transcoding method.
The above results are very encouraging, given that our method has
exceptionally performance in both video quality and computational
complexity.

REFERENCES
[1] Y. Liu, G. Li, Q. Tang, and J. Guo, “DCT domain logo

insertion of MPEG2 transcoding,” in Proc. IEEE Canadian
Conference on Electrical and Computer Engineering, vol.2,
May 2003, pp. 1219- 1222.

[2] S. Xiao, L. Lu, J. L. Kouloheris, and C. A. Gonzales,
“Low-cost and efficient logo insertion scheme in MPEG video
transcoding,” in Proc. of SPIE, Visual Communications and
Image Processing, vol. 4617, Jan. 2002, pp. 172-179.

[3] K. Panusopone, X. Chen, and F. Ling, “Logo insertion in
MPEG transcoder,” in Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, Salt Lake City ,
USA, vol.2, May 2001, pp. 981-984.

[4] “Information technology – generic coding of moving pictures
and associated audio information: video,” Int. Telecommun.
Union-Telecommun. (ITU-T) Recommendation H.262,
International Standard 13818-2, 2nd ed., Feb. 2000.

[5] “Advanced video coding for generic audiovisual services,” Int.
Telecommun. Union-Telecommun. (ITU-T) Recommendation
H.264, International Standard 14496-10, Mar. 2005.

[6] J.-H. Hur and Y.-L. Lee, “H.264 to MPEG-4 resolution
reduction transcoding,” in Proc. IEEE Region 10 Conference,
TENCON, Nov. 2005, pp. 1-6.

[7] JM 13.2. H.264/AVC reference software from
http://iphome.hhi.de/suehring/tml/download/.

3696

