An improved normal-mesh-based image coder

Un codeur d'image a base de maille
normale amélioré
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The normal-mesh-based image coder of Jansen, Baraniuk, and Lavu (JBL) is studied. First, the JBL coder is introduced, and several of its shortcomings
are identified. Then, to address these shortcomings, three modifications to this coder are proposed, namely, the use of a data-dependent base mesh, an
integer representation for normal/vertical offsets, and a different scan-conversion scheme based on bicubic interpolation. Experimental results show
that these proposed changes lead to improved coding performance in terms of both objective and subjective image-quality measures. In particular, the
use of a data-dependent base mesh helps to locate horizons more quickly and preserve image edges better. The number of bits required to encode the
normal/vertical offsets is reduced by representing this information with integers (as opposed to real numbers). Lastly, bicubic interpolation is found to
yield higher-quality image reconstructions, while still maintaining sharp edges.

Le codeur d’image a base de maille normale de Jansen, de Baraniuk, et de Lavu (JBL) est etudié. D’abord, le codeur de JBL est présenté et plusieurs de ses
points faibles sont identifiés. Puis, pour adresser ces points faibles, on propose trois modifications a ce codeur, a savoir, I’utilisation d’une maille de base
dépendant des données, une représentation par nombres entiers des excentrages normaux/verticaux, et un arrangement différent de balayage-conversion
basé sur I'interpolation bicubique. Les résultats expérimentaux prouvent que ces changements proposés menent a 1’exécution de codage améliorée en
termes de mesures objective et subjective de qualité d’image. En particulier, I’utilisation d’une maille de base dépendant des données aide a localiser
des horizons plus rapidement et a mieux préserver des bords d’image. Le nombre de bits requis pour coder les excentrages normaux/verticaux est
réduit en représentant cette information par nombres entiers (au lieu de nombres réels). Pour finir, I’interpolation bicubique s’avere pour rapporter des
reconstructions d’image de plus haute qualité, tout en maintenant les bords pointus.
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I Introduction

Many of today’s best image coders are based on wavelet trans-
forms [1]-[3]. Unfortunately, such coders cannot efficiently represent
the geometric features inherent in images (i.e., edges). This shortcom-
ing has led to an interest in schemes that better exploit the geometric
properties of images. Such schemes include ridgelets [4], curvelets [5],
edgelets [6], contourlets [7], wedgelets [8], and bandelets [9]. Re-
cently, an image coder based on normal (triangle) meshes was pro-
posed by Jansen, Baraniuk, and Lavu (JBL) [10], which we shall
henceforth refer to as the JBL coder. Unlike wavelets, meshes are well
suited to efficiently capturing the geometric information in images. For
example, consider images from the so-called horizon class (i.e., im-
ages consisting of constant-intensity regions separated by smooth con-
tours of discontinuity). It has been shown [10] that, under certain con-
ditions, the normal-mesh representation employed by the JBL coder
can represent horizon-class images more efficiently than wavelet-
based schemes. In particular, for a representation with n coefficients,
the normal-mesh and wavelet schemes achieve asymptotic error-decay
rates of O(n 1) and O(n~*/?), respectively. Furthermore, since many
real-world images behave somewhat like horizon-class images, the
preceding error-decay-rate result suggests that the JBL coder has con-
siderable promise for practical image-coding applications.

In spite of its merits, the JBL coder has some deficiencies that un-
necessarily restrict its performance. In this paper (which is an extended
version of [11]), we identify some of these shortcomings and propose
three modifications to the coder aimed at addressing these weaknesses.
Furthermore, we show that these modifications lead to improved cod-
ing performance.
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The remainder of this paper is structured as follows. First, Section 1I
comments on some of the notation and terminology used herein. Then,
Sections III and IV, respectively, introduce the JBL coder and the im-
plementation of it used in our work. In Section V, several shortcom-
ings of the JBL coder are identified. This then leads us to propose, in
Section VI, three modifications to the JBL coder aimed at addressing
these shortcomings. The implementation of our enhanced (i.e., with
our proposed modifications) coder is introduced in Section VII. Then,
by way of experimental evidence provided in Section VIII, we demon-
strate that each of our proposed modifications yields improved coding
performance. Finally, we conclude in Section IX with a summary of
our work.

II Notation and terminology

Before proceeding further, we introduce some of the notation and ter-
minology used herein. The sets of integers, odd integers, and real num-
bers are denoted as Z, Zodd, and R, respectively. In what follows, we
assume the reader to be familiar with basic geometric concepts, such
as a triangulation, Delaunay triangulation (DT), and constrained DT.
For more information on such concepts, the reader is referred to [12].
For an image with P bits per sample, the peak-signal-to-noise ratio
(PSNR) distortion measure is defined as PSNR = 201og,,([27 — 1]

/VMSE), where MSE corresponds to the mean-squared error.

III JBL coder

As mentioned previously, the focus of our work is the JBL coder. In the
sections that follow, we provide a brief introduction to this coder. First,
we describe the normal-mesh-based image representation employed
by the JBL coder and explain how this representation is constructed
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through a process known as mesh refinement or subdivision. Then, we
discuss scan conversion and a few other details relevant to this coder.

III.A Normal-mesh-based image representation

A grayscale image is a function f of two variables x and y, where z
and y correspond to position, and z = f(z,y) corresponds to image
intensity. In this way, an image can be viewed as a surface parameter-
ized over the zy-plane. Thus, mesh-based techniques for representing
surfaces can be used for images. In the case of the JBL coder, a normal
(triangle) mesh is employed for this purpose.

For our purposes, a normal mesh [13] is a multiresolution sur-
face representation that consists of a nested sequence of meshes
{Mo, M, ..., Mr_1}, generated by repeated refinement of a base
mesh Mj. The base mesh consists of a small number of points from
the true surface (i.e., the actual image-intensity surface to be approxi-
mated). The refinement process then generates a finer mesh by adding
new points from the true surface to a coarser mesh. This is done in
such a way that each new vertex on the finer mesh can be expressed as
a displacement from a base point on the coarser mesh in the direction
of the base point’s surface normal. In other words, the new vertices
added during refinement are located where surface normals from base
points on the coarser mesh pierce the true surface (i.e., new vertices are
located at so-called piercing points). The line passing through the base
point and along some search direction for locating a piercing point is
called a search line. Since each base point and its corresponding nor-
mal direction are completely determined by the coarser mesh, only a
single scalar value (i.e., a normal offset) is needed to identify the loca-
tion of each new vertex on the finer mesh. Thus, a normal mesh can be
completely characterized by its base mesh and a set of normal offsets.

As mentioned previously, an image can be represented as a sur-
face parameterized over the xy-plane. In what follows, we refer to this
plane as the parameter plane. Since some aspects of the JBL coder are
more easily explained in terms of the parameter plane than by explicit
three-dimensional (3D) geometry, we will largely adopt a parameter-
plane perspective in our description of this coder. In essence, the JBL
coder creates a partitioning of the parameter plane using a triangula-
tion, and then forms an interpolant over each of the resulting triangles
in order to construct a surface in three dimensions (i.e., the image sur-
face). In what follows, unless otherwise noted, the term vertex will
always refer to a vertex in the parameter-plane triangulation. Vertices
are associated with height (i.e., z-coordinate) values. In this way, each
vertex/height-value pair corresponds to a point in three dimensions.
With the JBL coder, the three points associated with the vertices of
each triangle are used to form a planar interpolant. By combining these
interpolants, a piecewise-planar image surface in three dimensions is
formed.

To represent discontinuities, the JBL coder models edges explicitly
using the so-called horizon model. As a matter of terminology, a con-
tour in the parameter plane that corresponds to a discontinuity contour
(i.e., image edge) is called a horizon. A vertex that is on a horizon is
said to be a horizon vertex, and an edge (in the triangulation) whose
two endpoints are horizon vertices is said to be a horizon edge. The
number of height values associated with a particular vertex depends
on whether or not the vertex is a horizon vertex. A nonhorizon vertex
is associated with only one height value, while a horizon vertex is as-
sociated with two, in order to represent the height of the image surface
on both sides of the horizon. To distinguish between these two cases,
each vertex is associated with a bit, called a horizon bit, indicating if
the vertex is a horizon vertex.

IILB Mesh refinement via subdivision

Although the JBL coder employs a normal mesh, the base mesh and
its subsequent refinement are more easily described in terms of the
parameter-plane triangulation (introduced above) than directly in terms
of the 3D mesh itself. First, the refinement process requires the notion
of a true surface. Since images are essentially assumed to be piece-
wise constant in [10], the true surface is constructed with piecewise-
constant interpolation of the original image sample data. As a matter of
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Figure 1: Subdivision of a horizon edge along the normal direction: (a) parameter-plane
view, and (b) 3D view.

convenience, for the purposes of this interpolation process, the original
sample values are aligned with points on the lattice (1/2)Zodq (rather
than the lattice Z). The base mesh is associated with a particular base
(i.e., initial) triangulation of the parameter plane. In the JBL scheme,
the base triangulation is chosen to have four vertices, corresponding to
the four corner points of the image bounding box. The refinement of
the mesh then corresponds to a refinement of the parameter-plane trian-
gulation through the addition of new vertices. In particular, refinement
of the triangulation is performed by quaternary subdivision, whereby
anew vertex is added for each edge in the triangulation, such that each
triangle is split into four new triangles. Because of the manner in which
the refinement of the parameter-plane triangulation is performed (i.e.,
using numerous normal directions), this entire process can essentially
be viewed as the refinement of a normal mesh.

When subdivision is performed as described above, the location of
the new vertex to be added for each edge is determined in one of two
ways, depending on whether the edge is a horizon or nonhorizon edge.
Horizon and nonhorizon edges are treated differently, since the goals
of refining these two types of edges are not the same. In the horizon-
edge case, the objective is to obtain a better polyline approximation
of a horizon, whereas in the nonhorizon-edge case, the objective is
to quickly locate new horizon vertices. We will now describe each of
these two types of subdivision in more detail. To simplify the explana-
tion that follows, some exceptional cases will not be considered in this
discussion.

II1.B.1 Horizon-edge subdivision

First, we consider the subdivision of a horizon edge. Since our goal in
this case is to construct a refined polyline approximation of the hori-
zon, we would like the piercing point associated with the horizon edge
to be a point on the horizon. To perform the subdivision, we first de-
fine the base point as the midpoint of the edge. Then, the search line
for the new horizon vertex is chosen to be normal to the edge and par-
allel to the xy-plane. The new vertex is added where the search line
pierces the vertical surface through the horizon. The above process is
illustrated in Fig. 1, where Figs. 1(a) and 1(b) are from the viewpoints
of the parameter plane and 3D space, respectively.

In the diagram, a filled circle denotes an endpoint associated with
a horizon vertex. The thick solid segment ejez is a coarse horizon
edge. The star b at the middle of the coarse edge represents a base



XU/ ADAMS: AN IMPROVED NORMAL-MESH-BASED IMAGE CODER 7

o Endpoint = Coarse Edge

#  Base Point = = Normal Offset

® o Piercing Point — Refined Edge

(b)

Figure 2: Subdivision of a nonhorizon edge along the normal direction: (a) parameter-
plane view, and (b) 3D view.

point. The dotted segment bp is on the search line, which is nor-
mal to the coarse edge e1e2 and parallel to the parameter plane. The
filled square p represents a new piercing point on the horizon, the
point at which the search line intersects the vertical surface through
the horizon. The (signed) length of the dotted segment between the
base point b and the piercing point p corresponds to the normal off-
set. The thin solid segments e;p and e2p connecting the endpoints
of the coarse edge and the piercing point are refined horizon edges
of the coarse horizon edge. The refined edges e1p and ezp form a
polyline refinement of the coarse horizon edge e1ez. Having located
the piercing point, we also need to determine the horizon-bit and z-
coordinate information associated with the newly added vertex. In this
case (i.e., subdividing a horizon edge along the normal direction), the
piercing point is the intersection of the search line with the vertical
surface through the horizon. Therefore, the piercing point is always
a point on the horizon. For this reason, no horizon bit is required
for the new vertex. Let 2; and 2;" be the two z-coordinates asso-
ciated with one endpoint of the horizon edge, and let z; and z;
be the two z-coordinates associated with the other endpoint of the
edge. Then, the two z-coordinates z~ and 2T associated with the new
vertex are determined as (1/2){min{z;, 2} + min{z;, 25 }} and
(1/2){max{z;, 2"} + max{z;, 23 }}, respectively.

HI.B.2 Nonhorizon-edge subdivision

Now, we consider the subdivision of a nonhorizon edge. Before pro-
ceeding, we need to determine which of the z-coordinates associ-
ated with the two endpoints of the nonhorizon edge are appropriate
to use for determining the nonhorizon edge in three dimensions. If
both endpoints of the nonhorizon edge are associated with nonhorizon
vertices, the z-coordinates of the endpoints are unambiguously deter-
mined. Suppose now that one of the endpoints of the nonhorizon edge
is associated with a horizon vertex. Since, at most, one vertex of a non-
horizon edge can be a horizon vertex, the other endpoint of the edge
must be associated with a nonhorizon vertex. Let us assume that the
horizon vertex is associated with the two z-coordinates z; and z;"
and that the nonhorizon vertex is associated with the z-coordinate zs.
The z-coordinate associated with the horizon vertex is chosen to be
whichever of {z; , 2]} is closer to z2. Then, the nonhorizon edge in
three dimensions is completely determined by its two endpoints and
their chosen z-coordinates. The base point is determined as the mid-
point of this edge. The search line is through the base point, normal to
the edge, and in the vertical plane containing the edge. The new point

is added where the search line pierces the image surface. This process
is illustrated in Fig. 2, where Figs. 2(a) and 2(b) are from the view-
points of the parameter plane and 3D space, respectively. The unfilled
circles e; and ez are the endpoints of an edge. The thick solid segment
erez is a coarse nonhorizon edge. The star b represents the base point
of the edge eye2. The normal search line is perpendicular to eje> and
in the vertical plane containing e€jez. At the unfilled square p, where
the search line intersects the image surface, a new nonhorizon vertex is
added. Consequently, the two segments €1p and péz, shown by the thin
solid segments, form a refinement of the coarse nonhorizon edge €1ez.
To illustrate the adaptivity of nonhorizon-edge subdivision along the
normal direction, Fig. 2 also shows the refinement of a new nonhorizon
edge pez for the next level of subdivision. Through the corresponding
base point b1, the search line is perpendicular to the edge pes. At the
filled square p1, the normal search line intersects the image surface. A
piercing point p; associated with a horizon vertex is located during the
subdivision. By two iterations of subdivision to the coarse nonhorizon
edge e1ez, a new horizon vertex p; is found.

II1.B.3 Exceptional cases during subdivision

As suggested earlier, some exceptional cases can occur during the re-
finement process. This is because, with the approach described above,
the piercing point found in a normal direction does not always lead to a
valid triangulation in the parameter plane. To avoid this and other prob-
lems, we must, in some exceptional circumstances, include an offset in
the vertical direction, in lieu of or in addition to the normal direction.
Therefore, an additional value, called the direction value, is required
for each offset to capture which combination of normal/vertical direc-
tions is employed. Because of space constraints, the exceptional cases
are not discussed further here. The interested reader is referred to the
first author’s master’s thesis [14] for a detailed treatment of these cases.

In all of the subdivision cases, once the search line is fixed, the
offset is calculated by measuring the (signed) distance between the
base point and the piercing point. Offsets are signed quantities, since
these displacements can be in either of two directions along the search
line. In all of the subdivision cases other than the horizon-edge case
along the normal direction, once a piercing point is found, this point is
projected vertically onto the parameter plane to obtain a corresponding
(triangulation) vertex. The horizon bit for the offset associated with
this new vertex is then set to 1 if the vertex is on a horizon, and 0
otherwise. The z-coordinate associated with the new vertex is the z-
coordinate of the image surface at the piercing point.

It is worth noting that the normal search direction used in the sub-
division of nonhorizon edges contributes very significantly to the fast
location of new horizon vertices, since the normal direction tends to
point towards a nearby function discontinuity if one exists. In essence,
the choice of a normal search direction makes the subdivision process
adaptive to the image data (i.e., data-dependent). In contrast, if we
were instead to perform these searches in the vertical direction, new
vertices would always be added at the midpoints of the edges in the
parameter-plane triangulation, making the fast location of new hori-
zon vertices more difficult.

III.C  Other comments on the JBL coder

The normal-mesh-based representation produced by the JBL coder
is completely characterized by the base mesh, normal/vertical off-
sets, horizon bits, and direction values. Using this information, the
corresponding mesh can be reconstructed. Since the resulting mesh
representation is a surface defined on a continuous domain, a scan-
conversion process is needed to convert the mesh data from the contin-
uous domain to points on a raster grid. It is implied in [10] that planar
interpolation is being used in the scan conversion by the JBL coder. By
sampling the image surface on a regular grid (aligned with the centres
of pixels in the parameter plane), a rasterized image is produced.

IILD Simplified JBL coder

Having introduced the JBL coder, we now take a moment to introduce
a simplified version of this coder that is implicitly suggested in [10]
(in the context of natural images). We refer to this simplified version
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of the coder by the name JBL-S. Conceptually, the key difference be-
tween the JBL and JBL-S coders is the way in which the original image
surface is formed. In the JBL-S coder, the image surface is constructed
using piecewise-planar interpolation rather than piecewise-constant in-
terpolation. Because a piecewise-planar interpolant is used, the im-
age surface has no discontinuities, and hence no horizons exist either.
Thus, the JBL-S coder is essentially the JBL coder without the horizon
model. Unlike in the JBL case, horizon bits are not needed, since hori-
zon vertices are effectively not used in the JBL-S coder. Furthermore,
in the JBL-S coder, the exceptional subdivision cases mentioned ear-
lier can never occur, and subdivision always employs a normal search
direction. Since the search direction is always normal, direction values
are not required. Thus, in the case of the JBL-S coder, the normal-
mesh-based image representation is completely characterized by only
the base mesh and normal offsets.

IV Our implementation of the JBL coder

Before proceeding further, we briefly describe our implementation of
the JBL coder, which was used as the basis for our work herein. Gen-
erally, our implementation is written in MATLAB. In [10], the JBL
coder is applied exclusively to piecewise-constant images, most likely
because the horizons in such images can be detected with a very triv-
ial edge detector. To apply the JBL coder to a larger class of images,
however, a more sophisticated edge detector is required. In our imple-
mentation of the JBL coder, we employ a Canny edge detector [15]
to assist in the identification of horizons. After the horizons have been
identified, a normal-mesh-based representation is constructed, the cor-
responding normal/vertical offsets are quantized, and a final bit rate is
estimated based on a simple, implicitly assumed coding scheme.

In our implementation, the normal/vertical offsets are quantized
with a separate uniform scalar quantizer for the offsets of each sub-
division level. Rather than being specified individually, all quantizer
step sizes are computed from a single encoder parameter g. In particu-
lar, the step size Ay, for the offsets of the k-th subdivision level (where
k = 0 corresponds to the base mesh) is chosen as Ay, = (12’“’l for
k > 1. Here, k # 0 since no offsets are associated with the base mesh.
This choice of Ay causes offsets from coarser levels to be weighted
more heavily than those from finer levels. Such weighting is desirable
since, in a normal mesh, errors in the coarser-level offsets introduce
considerably more distortion than errors in the finer-level offsets, due
to the fact that errors in the reconstructed vertices and their height val-
ues introduced by offset quantization propagate from coarser to finer
levels of the mesh.

In [10], the authors do not attempt to estimate the bit rate required
to code the data of the normal-mesh-based image representation. In
our work, however, we assume a simple coding scheme for the data
and determine the corresponding bit rate based on entropy estimates.
For the remainder of this section, let W, H, and P denote the width,
height, and number of bits per sample in the image being coded, and
let L denote the number of subdivision levels. Table 1 identifies the
mesh data that needs to be coded for the JBL coder. The general struc-
ture of the code stream used to encode this information is as follows.
The code stream begins with a simple header which includes basic in-
formation such as W, H, P, L, and the quantization parameter g. This
is followed by the base-mesh information. Since the base mesh con-
sists simply of four vertices corresponding to the four corners of the
image bounding box, the - and y-coordinates of the vertices can be
derived from W and H. Only the z-coordinates need to be included in
the code stream, where P bits are used for each coordinate. Finally, the
data for each subdivision level is appended to the code stream in order
of increasing subdivision-level index. For each level of subdivision, the
new-vertex information includes offsets, horizon bits, direction values,
a scale parameter \ for offset data (to be discussed shortly), and the ac-
tual probabilities for normal-bit and direction-value data. The offsets,
horizon bits, and direction values are assumed to be entropy-coded
(e.g., by means of arithmetic coding [16]).

Table 1
Summary of mesh data for the JBL coder
Data name Type Range
Offset R :I:max{2p—1,$,H;1}
Direction value Z {0,1,2}
Horizon bit Boolean {0,1}
Base mesh Z 0to2F —1

(z-coordinate)

Now, we explain how we estimate the rate for the entropy-coded
parts of the code stream, namely, the normal/vertical offsets, horizon
bits, and direction values. First, we consider the normal/vertical off-
sets. Since the offsets have a symmetric, sharply peaked probability
distribution with zero mean, we employ a (zero-mean) Laplacian dis-
tribution to model this information. In particular, we employ a proba-
bility density function ps of the form

pon(z) = e ! M
where ) is a scale parameter. To determine the value of A, we measure
the variance o2 of the offset data and then match the variance of the
Laplacian distribution to 2, yielding the choice A\ = /2/0. Since
the offsets from different subdivision levels typically have distinct dis-
tributions, the offsets are modelled on a per-subdivision-level basis.
Thus, we must choose a parameter \; for each subdivision level [, and
in our implementation 32 bits are employed to represent each A;. The
entropy Eoff,; of the quantized offsets at level [ can be estimated as

Eo,1 = — Z fr logy i, ()
=1

where n is the total number of quantization bins used, f is the frac-
tion of offsets quantized to the k-th bin, and py, is the probability that
an offset will be in the k-th bin (for the [-th subdivision level). For a
quantization bin associated with the interval [a, b], the quantity py is
simply computed as pr = fab Do (z)dx, where post(x) is as defined
in (1) with A = A;.

Next, we consider the rate estimation for the horizon-bit and
direction-value data. In this case, a first-order entropy estimate is used.
The first-order entropy E of a source is calculated as

n

E ==Y pilog,ps, ©)

k=1

where n is the alphabet size and py is the probability of the k-th
symbol. Let Ehor,; and Egir,;, respectively, denote the entropies of the
horizon-bit and direction-value data for the [-th subdivision level. To
compute Fhor; using (3), we let n = 2 (since the alphabet is binary),
and the probabilities {pk}izl are set to the first-order probabilities of
the actual horizon-bit data. To compute the entropy Egir,; using (3), we
let n = 3 (since the alphabet is ternary), and the probabilities {px. }3_;
are set to the first-order probabilities of the actual direction-value data.
In the case of both horizon-bit and direction-value data, the quantities
{pk}Z;ll are included in the code stream, while p,, is not, as it can be
deduced from the relationship > _;'_, pr = 1.

Given the above results, the total number of bits R required for the
coded image can be computed as

L

R = [(Eoff,i + Edir,1) Noft,i + Ehor,i Nhor,i] + Roverhead,  (4)
=1

where Nofr,; and Npor, are, respectively, the number of offsets and
horizon bits at subdivision level [, and Roverhead is the number of
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Figure 3: [Ineffectiveness of a data-dependent base mesh for the circle3 image: the
original image superimposed on the (a) base mesh, and the mesh after (b) one, (c) two,
(d) three, (e) four, and (f) five levels of subdivision.

bits devoted to other overhead information. The overhead informa-
tion accounted for by Roverhead includes (a) 16 bits for each of W
and H, (b) 8 bits for each of P and L, (c) 32 bits for the quanti-
zation parameter ¢ (introduced above), (d) 32 bits representing the
parameter \; for each subdivision level [, (e) 32 bits for the actual-
probability information for horizon-bit data for each subdivision level,
and (f) 32-2 = 64 bits for actual-probability information for direction-
value data for each subdivision level. Since we use only first-order
probabilities in the rate estimation, the rate does not depend on the
data-scanning order used in the coding process.

Because of the similarities between the JBL and JBL-S coders as
explained in Section III.D, the JBL-S coder is essentially implemented
trivially as a special case of the JBL coder with a piecewise-planar im-
age model. In this case, the set of horizons is empty, and consequently
the horizon bits and direction values do not need to be coded.

V Shortcomings of the JBL coder

Having introduced the JBL coder, we now discuss some of its short-
comings. By understanding the weaknesses of this coder, we can gain
better insight into how we might improve upon them. The modifica-
tions to the coder that we propose later are motivated by the desire to
overcome these deficiencies.

V.A Choice of base mesh

One of the strengths of the JBL coder is its fast asymptotic error-decay
rate for horizon-class images. This fast rate is, in part, due to the ability
of the JBL coder to quickly locate new horizon vertices. Two different
mechanisms are available to the JBL coder to assist in the location of
horizon vertices: (1) the choice of base mesh, and (2) the adaptivity
inherent in normal subdivision. Unfortunately, the JBL coder (which
uses a trivial data-independent base mesh) relies solely on the second
of these mechanisms in order to quickly locate enough horizon ver-
tices to form good polyline approximations of horizons. As a result,
normal subdivision usually introduces many nonhorizon vertices, and
such vertices do not help to improve polyline approximations of hori-
zons. Furthermore, many of these new nonhorizon vertices will also be
positioned far away from any horizon, making a relatively smaller con-
tribution to achieving a good surface approximation as a result. This
situation is undesirable, as it ultimately leads to reduced coding effi-
ciency. Furthermore, this degradation in coding efficiency can be es-
pecially significant at low bit rates, where performance often depends
very critically on the fast location of horizon vertices. In essence, the
problem here is that, by using a data-independent base mesh (as op-
posed to a data-dependent one), the JBL coder severely restricts its
ability to quickly locate horizons.

The above problem is illustrated by way of the example shown in
Fig. 3. In this example, we have the image circle3, consisting of a
single solid-gray circle that we wish to code using the JBL coder. The
figure shows the mesh obtained after each of several levels of subdivi-
sion (superimposed on the original image). In a good polyline approx-
imation of a horizon, triangle edges should not cross the horizon; they
should instead be tangential to the horizon curve. Unfortunately, even
after five levels of subdivision, the resulting very dense mesh does not
form a particularly good polyline approximation of the circle bound-
ary. There is, however, good reason to believe that, with an intelligently
chosen data-dependent base mesh, a better approximation of horizons
can be achieved.

V.B Normal/vertical offset format

The second shortcoming of the JBL coder involves the representation
it employs for normal/vertical offsets. An offset measures the distance
from a base point to its associated piercing point. Since neither the
base point nor the piercing point falls on an integer grid, both can be
anywhere on the image surface. The offset measuring the distance be-
tween the two points is a real number.

By further observation, we notice that the image surface is not arbi-
trary. Because of the piecewise-constant interpolation used to generate
the image surface, at least one of the x-, y-, or z-coordinates of any
point on the surface is an integer. This suggests that the JBL coder
might be improved by exploiting this special property of the image
surface.

V.C Scan conversion

The third shortcoming of the JBL coder involves the scheme employed
for scan conversion. Ideally, we desire a scan-conversion scheme that
preserves both smooth regions in an image and sharp intensity changes
along horizons. The piecewise-planar interpolation scheme employed
by the JBL coder yields an interpolant that is smooth within each trian-
gular domain (of the parameter-plane triangulation), but is not usually
smooth at the boundaries of these domains, because of mismatches in
partial derivatives along the boundaries of neighbouring domains. A
higher-order interpolation scheme could improve the smoothness of
the interpolant along domain boundaries. For this reason, there is quite
likely room for improvement in the scan-conversion method employed
by the JBL coder.

VI Proposed modifications to the JBL coder

Having identified some shortcomings of the JBL coder, we now pro-
pose three modifications to it in order to overcome these weaknesses.
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As we will later show, each of these changes leads to improved coding
performance.

VI.A Choice of base mesh

Our first modification to the JBL coder affects the choice of base
mesh. In particular, we propose the use of an intelligently chosen data-
dependent base mesh (instead of a data-independent one). As men-
tioned earlier, a data-dependent base mesh can help to achieve good
polyline approximations of horizons using relatively few vertices. In
simple terms, our base-mesh generation method uses image-edge in-
formation to produce a set of horizon vertices to be employed in the
base mesh. These horizon vertices along with some extra points are
then triangulated to form the base mesh. In what follows, we describe
our base-mesh generation method in more detail.

Since our base-mesh generation method requires image-edge infor-
mation, the first step in our method is to locate all of the edge pixels
in the image. This is accomplished by using a Canny edge detector.
To avoid potential problems in subsequent processing, any intersect-
ing edges are split at their intersection points. Thus, the output of the
edge-detection process is always a set of edges that do not intersect
each other, except possibly at their endpoints.

Once the image edges have been found, we must select, for each
edge, a subset of its pixels, called a critical set, that effectively captures
its shape. To do this, curvature information for the edge is employed.
Using the method of [17], we compute an estimate of the curvature
of the edge at each of its constituent pixels. Initially, we select as the
critical set the first and last pixels of the edge as well as every pixel
whose curvature value is above a certain threshold. In this way, an
edge with sharp cusps is divided into several pieces. This approach
solves the potential problem of needing many pixels to form a good
polyline approximation at places with large curvature. The preceding
critical set is then augmented by including more pixels, such that the
distance between the neighbouring pixels is smaller than the reciprocal
of the local curvature of the edge. In this way, we include more pixels
in regions where the edge bends sharply, and fewer pixels in regions
where the edge is relatively straight.

Once the critical sets of pixels for the image edges have been de-
termined, this information must be mapped into geometric structures
in the continuous domain. For each edge, the critical set of pixels is
converted into a polyline approximation of a horizon in the continu-
ous domain. This is accomplished as follows. First, pixels from the
critical set are mapped to points in the parameter plane. Then, the re-
sulting points are joined by line segments in such a way as to maintain
the same connectivity that these points have on the image edge from
which they were derived. Since pixel centres are aligned on the lat-
tice (1/2)Zoda and horizons fall on (unit-square) pixel boundaries, at
least one of the x- or y-coordinates of all horizon points will always
be an integer. This preceding discrete-to-continuous-domain mapping
process yields a set of polyline approximations of horizons. In what
follows, let V' and E denote, respectively, the set of horizon points
and the line segments associated with the polyline approximations of
horizons.

The last step in our base-mesh generation method is to produce a tri-
angulation of the parameter plane from which the base mesh is trivially
obtained. In particular, we want to construct a triangulation containing
V' as triangle vertices and E as triangle edges. Since some edge con-
straints are imposed on the triangulation process, we cannot use a DT
(since a DT may not exist). In an attempt to obtain a triangulation with
good angle properties, we use a constrained DT. Furthermore, for any
given set of points and constrained segments, we would like to produce
a constrained DT that is unique. If the triangulation is unique, we do
not need to code the complete connectivity information for the triangu-
lation, since a knowledge of the constrained segments alone will suf-
fice. This is highly desirable, as any additional connectivity informa-
tion that must be coded will negatively impact coding efficiency. For
this reason, we employ a constrained DT with preferred directions [18]
in order to ensure the uniqueness of the triangulation.

Figure 4: Example of a data-dependent base mesh for the circle3 image.

(a) ' (b)

Figure 5: Two cases for the proposed interpolation scheme: interpolation (a) away from
any horizons, and (b) near a horizon.

Although we could use a constrained DT of the points V' and seg-
ments E to form the base mesh, we elect not to do so. Instead, we
add some extra points V; (called Steiner points) to V. Then, we per-
form a constrained DT of the points V U V5 and segments E. This step
further improves the quality of the triangulation by providing a more
uniform vertex distribution and preventing sliver triangles. The Steiner
points Vs are generated by the Triangle software [19]. Unfortunately,
the Steiner points have real - and y-coordinates. To overcome the in-
efficiency of coding real coordinates, the coordinates of Steiner points
are rounded to the nearest pixel centres. In other words, both the z- and
y-coordinates of the rounded Steiner points are elements of (1/2)Zoqq-
Clearly, no Steiner point could be a horizon vertex, since none of the
coordinates of the Steiner points is an integer. Therefore, the rounding
operation also eliminates the need to store horizon bits pertaining to
the Steiner points. Furthermore, since the rounding of the Steiner-point
coordinates changes the vertex geometry only very slightly, the good
vertex distribution is maintained in the data-dependent base mesh.

As it turns out, because of the geometry of the vertices in our data-
dependent base mesh, many edges in the constrained DT are also edges
in the DT (i.e., many constraints are inactive). The large number of in-
active constraints can be attributed partly to the short segments in £
and good distribution of vertices in the planar straight-line graph. As
an optimization, we encode only the constrained segments that affect
the resulting constrained DT. In this way, the (constrained-segment) in-
formation that needs to be coded for the base mesh can be significantly
reduced.

To illustrate the benefits of a data-dependent base mesh, we pro-
vide the example of a base mesh generated by our (above) method. In
particular, we consider the circle3 image from an earlier example.
For this image, the base mesh produced using our method is shown in
Fig. 4 (superimposed on the original image). Although the mesh con-
tains relatively few vertices, it still manages to provide a good approxi-
mation of the horizon (i.e., circle boundary). For comparison purposes,
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Table 2

Summary of features for the various coders

Coder Image interpolant Model Base mesh Offset format Scan conversion

JBL-S Piecewise-planar Nonhorizon Data-independent R Piecewise-planar

JBL Piecewise-constant Horizon Data-independent R Piecewise-planar
Enhanced Piecewise-constant Horizon Data-dependent/independent RorZ Piecewise-planar/bicubic

recall the earlier results from Fig. 3, which show the refined meshes for
the same image obtained from a data-independent base mesh. Clearly,
despite having significantly fewer vertices, the base mesh in Fig. 4 gen-
erated using our method has a much better polyline approximation of
the horizon than the refined mesh in Fig. 3(f) generated from a data-
independent base mesh. This example clearly demonstrates that, by
carefully choosing the base mesh with our method, superior polyline
approximations of horizons can be obtained with fewer vertices (com-
pared to the case in which a data-independent base mesh is employed).

VL.B Normal/vertical offset format

Our second modification to the JBL coder involves the representation
of normal/vertical offsets. Since integers can be more efficiently coded
than real numbers, we propose to identify each piercing point with an
integer instead of a real number. Recall that an offset is a real value
measuring the distance between a base point and its corresponding
piercing point. Because of the piecewise-constant interpolation pro-
cess used to generate the image surface, we observe that at least one
of the z-, y-, or z-coordinates of each piercing point must be an inte-
ger. Therefore, along the normal/vertical search line through the base
point, all possible piercing points can be identified by finding all inter-
sections of the search line with planes of the form x = ¢, y = ¢, and
z = ¢, where ¢ € Z. In this way, all possible piercing points can be
enumerated with an integer index. This index can be used to specify
which of the possible piercing points is the actual piercing point. By
using an integer index instead of a real number for each offset, coding
efficiency can likely be improved.

VI.C Scan conversion

Our third modification to the JBL coder is in the interpolation scheme
used for scan conversion. In short, we propose the use of a higher-order
interpolant to improve the smoothness of the reconstructed images at
the boundaries of triangular domains in the parameter-plane triangula-
tion, while still maintaining sharp image edges. Our method is based
on the bicubic interpolation technique described in [20, pp. 446-449],
which yields C*-continuous surfaces (i.e., surfaces with continuous
first-order partial derivatives).

Since we wish to preserve sharp edges in the image, we cannot sim-
ply apply the above technique from [20] without modification, as this
would have the undesirable effect of badly blurring edges. To avoid
unnecessary blurring, we modify the behaviour of the preceding tech-
nique in the vicinity of horizons. In effect, this leads to two distinct
cases, depending on whether or not the triangular domain being pro-
cessed borders on a horizon edge. These two cases are illustrated in
Figs. 5(a) and 5(b). In each case, part of the parameter-plane triangu-
lation is shown, and the triangular domain over which we wish to form
an interpolant is denoted by a vertically hatched triangle. The light-
shaded and dark-shaded areas denote two different regions separated
by a horizon.

In the first case, shown in Fig. 5(a), the triangular domain being
processed does not border on a horizon edge. Here, we directly ap-
ply the method of [20], which generates an interpolant that passes
through the three points associated with the three vertices of the tri-
angle in the mesh and also has first-order partial derivatives that are
continuous along the boundary of (as well as inside) the triangular do-
main. All 1-ring neighbours (i.e., diagonally hatched triangles) of the
triangular domain being processed are used to determine the necessary
partial-derivative information; that is, all vertex/height-value pairs in

and on the boundary of the diagonally hatched regions are used for
interpolation.

In the second case, shown in Fig. 5(b), the triangular domain being
processed borders on a horizon edge. Here, when determining the in-
terpolant for a particular triangular domain, we use only vertex/height-
value pairs from the same side of the horizon as the triangular do-
main being processed. The region comprised of neighbouring trian-
gles (i.e., the diagonally hatched region) straddles the horizon. We use
only vertex/height-value pairs in and on the boundary of the diagonally
hatched light-shaded regions for interpolation, since the triangular do-
main being processed is also from the same side of the horizon (i.e.,
the light-shaded as opposed to the dark-shaded region).

By combining the interpolants for each of the individual triangular
domains, we obtain a complete interpolated image surface. By sam-
pling this surface on a rectangular grid aligned to the pixel centres in
the parameter plane, we generate a rasterized image.

VII Enhanced coder

In order to facilitate the further analysis of our three proposed JBL-
coder modifications, we added support for these changes to our orig-
inal implementation of the JBL coder, resulting in what we refer to
as our enhanced coder. For convenience, we summarize the main fea-
tures of the various coders (i.e., the JBL, JBL-S, and enhanced coders)
in Table 2. The enhanced coder supports all combinations of data-
independent/data-dependent base mesh, real/integer offsets, and pla-
nar/bicubic scan conversion. In what follows, we introduce some de-
tails regarding the enhanced coder. Since the enhanced coder is similar
in many ways to the original version, we focus our attention only on
the details that differ.

Table 3 shows the data that needs to be coded for the enhanced
coder. The real- or integer-offset data is assumed to be entropy-coded,
where the corresponding bit rate can be estimated using (2). When inte-
ger offsets are employed, the specified quantizer step-size parameter g
should satisfy ¢ > 1. If ¢ = 1, quantization is effectively bypassed,
and no information is discarded by quantization. The bit rate corre-
sponding to the direction-value and horizon-bit data can be estimated
using (3), as in the JBL coder. The total number of bits required for the
coded image can be calculated using (4), with Roverhead being mod-
ified to include the extra information needed for the data-dependent
base mesh (e.g., the numbers of horizon vertices and Steiner points in
the base mesh, vertex locations, height values, and active-constraint
segments for the constrained DT).

Consider now the coding of the base mesh. Here, we focus only on
the case of a data-dependent base mesh, since the data-independent
case is simply handled as described earlier in Section IV. We use
16 bits for each of the numbers of horizon vertices and Steiner points in
the data-dependent base mesh. In the subsequent discussion, let W, H,
and P denote the width, height, and the number of bits per sample of
the original image, respectively. Since the z-, y-, and z-coordinates of
vertices of the base mesh tend to have fairly uniform distributions, we
choose not to use any entropy coding for this data. For the horizon ver-
tices in the base mesh, each of the x- and y-coordinates is an element
of (1/2)Z. Furthermore, we know that if the z-coordinate is an integer,
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the corresponding y-coordinate must be an element of (1/2)Zodq, and
vice versa. Consequently, we need only code the (single-bit) fractional
part of either the z- or y-coordinate. In our case, we choose to code
only the fractional part of the z-coordinate. Thus, each of the x- and
y-coordinates is represented using [log, W + 1 and [log, H] bits,
respectively. In the case of Steiner points in the base mesh, we ob-
serve that the z- and y-coordinates of such points are always elements
of (1/2)Zoda. Thus, we need not code the (single-bit) fractional part
of these values (which is always one). So, for Steiner points, we use
[log, W1 and [log, H bits to represent each x- and y-coordinate,
respectively. The four corner points of the image bounding box are al-
ways chosen as vertices in the base mesh. Their x- and y-coordinates
can be derived from the size of the image and therefore do not need
to be coded. Each z-coordinate in the base mesh is represented with
P bits. The (active) constrained line segments for the base mesh are
coded as a list of pairs of vertex indices, where vertices are indexed
according to their order of appearance in the code stream.

The code-stream format employed by the enhanced coder is very
similar to that of the original coder. Some basic information is included
in the header (e.g., W, H, etc.). Then, the x-, y-, and z-coordinates of
the base mesh are coded as explained above. Finally, the data associ-
ated with different levels of subdivision are coded, starting from data
associated with the smallest subdivision-level index and proceeding to
the data associated with the largest subdivision-level index.

Note that, since we do not entropy-code the base-mesh informa-
tion, there are probably more efficient schemes for handling this data.
At high bit rates, the base-mesh information constitutes only a small
fraction of the entire code stream. Consequently, the price paid for not
entropy-coding the base-mesh information is relatively small. At low
bit rates, however, the base-mesh information can consume a more sig-
nificant fraction of the entire code stream. So, the cost of not entropy-
coding the base-mesh information is more significant in this case. In
spite of our choice not to entropy-code the base-mesh data, however,
we still obtain reasonably good performance at low rates. We leave
it as a subject of future work to explore the use of more sophisticated
coding schemes for the base-mesh information (perhaps by performing
differential coding of the vertex coordinates).

VIII Experimental results

Earlier, we suggested that our proposed modifications to the JBL coder
would improve its performance. In the sections that follow, we sup-
port our claim through experimental evidence. Although numerous
8-bit grayscale test images were employed in our work (for details
on the other test images employed in our work, see [14]), we fo-
cus our attention on the results for two representative images herein,
namely, the paw and peppers images. The peppers image is taken
from the well-known USC image database [21] and has dimensions of
512 x 512 pixels, while the paw image is our own synthetic test image
with dimensions of 1024 x 1024 pixels.

Since we are primarily interested in low bit rates in our work, when
we subsequently use qualifiers like “low” or “high” for the bit rate,
these qualifiers should be understood in relative terms (i.e., relative
to the range of bit rates under consideration in our study). In what
follows, we evaluate the performance of each of our three proposed
modifications to the JBL coder in turn.

VIILLA  Choice of base mesh

To begin, we consider our proposed modification to the JBL coder of
employing a data-dependent base mesh. In what follows, we refer to
the JBL coder with this change by the name “XA.” To assess the value
of our proposed change, we compressed numerous test images at var-
ious bit rates with both the JBL and XA methods and examined the
results. In what follows, we provide a representative subset of these
results for the paw and peppers images. For reference purposes,
we also include results obtained from the JBL-S and (in some cases)
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Figure 6: Coding performance for the (a) paw and (b) peppers images using the JBL-S,
JBL, XA, and JPEG-2000 methods.

Table 3

Summary of data for the enhanced coder

Data name Type Range of value
Offset RorZ  +max{2” —1, W4}
Direction value Z {0,1,2}
Horizon bit Boolean {0,1}
Base mesh

e No. of horizon vertices® Z —

e No. of Steiner points® 7 —

e " horizon (1/2)z 0toW —1

e 1™ Steiner (1/2)Zoga Oto W — 1

e y* horizon (1/2)z O0toH —1

e y* Steiner (1/2)Zoaa Oto H — 1

oz Z 002" —1

e Active line segment™ Z —

*Employed only when using data-dependent base mesh.

JPEG-2000 [3] coders. To maintain a fair comparison for the mesh-
based methods, the number of subdivision levels for each method was
chosen so that the final-mesh vertex counts would be as close to one
another as possible (without giving an unfair advantage to our XA
method). Since these counts can be controlled only very coarsely, it
is possible only to have them match to within a factor of about three.
More specifically, for the paw image, the JBL and JBL-S coders use
six levels of subdivision, resulting in 4225 vertices, while the XA
coder uses two levels of subdivision, resulting in 3308 vertices. For
the peppers image, the JBL and JBL-S coders use seven levels of
subdivision, resulting in 16 641 vertices, while the XA coder uses two
levels of subdivision, resulting in 6543 vertices. In what follows, we
examine the results obtained in detail.

The rate-distortion plots obtained for the paw and peppers im-
ages using the various methods are shown in Fig. 6. From these re-
sults, we can see that, at high bit rates, the XA coder outperforms the
JBL and JBL-S coders, and the XA coder outperforms even the JPEG-
2000 coder in the case of the paw image. At low bit rates, however,
the XA coder can sometimes perform more poorly than the other three
methods because of the rate overhead associated with the base mesh
(which is not entropy-coded in our scheme). As mentioned earlier,
clever schemes for coding the base mesh could reduce this overhead
and significantly improve the coding efficiency of the XA method at
low bit rates. From the coding results, we can also see that, at low bit
rates, the JBL coder performs worse than the JBL-S coder, while at
high bit rates, the JBL coder performs better than or comparably to the
JBL-S coder. The superior performance of the JBL coder at high bit
rates can be attributed to the greater efficiency of the horizon model,
while the inferior performance at low bit rates can be attributed to the
overhead of encoding horizon bits and direction values.

Now, we consider the subjective performance of the various meth-
ods. For the case of the paw and peppers images, examples of the
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Figure 7: Coding example for the paw image: lossy reconstructions obtained at about
400:1 compression using the (a) JBL-S, (c) JBL, and (e) XA methods, along with the cor-
responding final meshes employed by the (b) JBL-S, (d) JBL, and (f) XA methods.

obtained reconstructed images are shown in Figs. 7 and 8, respectively.
In the first case, the final mesh employed by each method is shown su-
perimposed on the original image, with the horizon vertices denoted
by circles. Examining the results for the paw image in Fig. 7, we can
see that very significant edge distortions occur in the case of the JBL
and JBL-S methods, while the XA scheme has little noticeable dis-
tortion. Clearly, the XA method approximates horizons much better
than the JBL and JBL-S methods. Examining the reconstructions of
the peppers image in Fig. 8, we can see that the results obtained
with the XA method are comparable to those obtained with the JBL
and JBL-S coders, in spite of the fact that the JBL and JBL-S methods
have meshes with about 2.5 times more vertices than the XA case. On
this basis, it is reasonable to conclude that the XA scheme is superior
to the JBL and JBL-S schemes.

Let us again consider the subjective results for the paw image, in-
cluding the final meshes produced by the various methods, as shown
in Fig. 7. By examining the final meshes, we can see why the XA
method is able to outperform the JBL and JBL-S methods. The mesh
for the JBL-S method has some larger-area triangles that straddle hori-
zons. This leads to very visually disturbing artifacts such as those near
the rightmost pad of the paw in Fig. 7(a). By explicitly modelling hori-
zons, the JBL and XA methods are able to locate horizon vertices faster
and reduce distortions in large regions. Furthermore, the XA method,
with a data-dependent base mesh, locates horizon vertices faster and
approximates horizons better than the JBL and JBL-S schemes. As an
aside, we note that the small triangular teeth occurring in the recon-

(a) (b)

(© ' (d)

Figure 8: Coding example for the peppers image: portions of the (a) original image and
the lossy reconstructions obtained at about 29:1 compression using the (b) JBL-S, (c) JBL,
and (d) XA methods.

structed image for the XA coder can be attributed to inaccuracies in
the estimation of the location and curvature of horizons.

VIILB Real versus integer offsets

Now, we consider our second proposed change to the JBL coder, which
is to use integers rather than real numbers to represent normal/vertical
offsets. To evaluate the effectiveness of our proposed change, we coded
several test images with the XA coder at various bit rates, using both
real and integer representations of offsets. Some representative results
obtained in the case of the paw image (using two levels of subdivi-
sion) are shown in Fig. 9. From this graph, we can see that, at low-to-
medium bit rates, integer offsets yield better results than real offsets,
with the difference being more pronounced at medium rates, while in
the high-bit-rate case, comparable results are obtained with integer and
real offsets. It is worth noting that results similar to those above also
hold in terms of subjective image quality (i.e., integer offsets are better
than or as good as real offsets).

VIII.C Planar versus bicubic interpolation

Lastly, we consider our third proposed change to the coder, which
is to use bicubic instead of planar interpolation for scan conversion.
To assess the value of this change, both planar and bicubic interpola-
tion were employed in the XA coder to compress numerous images
at various bit rates. Some representative results obtained in the case
of the peppers image (using two levels of subdivision) are shown
in Fig. 10. From these results, we can see that bicubic interpolation
outperforms planar interpolation, especially at high bit rates. In terms
of subjective image quality, bicubic interpolation also leads to supe-
rior results, as it tends to better preserve smoother regions in images,
without destroying sharp intensity changes at horizons.

IX Conclusion

In this paper, we proposed three modifications to the JBL coder and
demonstrated through experimental results that these changes lead to
improved coding performance. For example, we showed that good
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Figure 9: Coding performance for the paw image using real and integer offsets.

data-dependent base meshes can help to locate horizons faster and pre-
serve edges better. Also, we showed that using a normal/vertical-offset
representation based on integers (instead of real numbers) yields supe-
rior performance. Finally, we demonstrated that, by exploiting horizon
information, bicubic interpolation can be made to provide smoother
reconstructed images while still maintaining sharp edges.
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